期刊文献+

CO_2在α-U(001)表面的吸附和解离 被引量:5

Adsorption and Dissociation of CO_2on theα-U(001) Surface
下载PDF
导出
摘要 采用广义梯度密度泛函理论研究了0.25ML覆盖度下CO_2在α-U(001)表面上的吸附和解离,得到了CO_2的稳定吸附构型和吸附能,确定了CO_2的解离过渡态和解离能垒,探讨了CO_2与表面U原子的相互作用本质.结果表明CO_2趋向以C(O)-U多键结合方式在α-U(001)面发生强化学吸附,吸附能为1.24-1.67 eV;C-O键的活化程度依赖于表面电子向CO_2发生转移的程度.CO_2与表面U原子的相互作用主要来自于U原子电子向CO_2最低空轨道(LUMO)2π_u转移,以及CO_2π_u/1π_g/3σ_u-U 6d轨道间杂化而生成新的化学键.以形成3个C-U键和6个O-U键模式在穴位1和穴位2上发生吸附的CO_2(H1-C_3O_6和H2-C_3O_6)的解离吸附能分别为3.15和3.13 eV,解离能垒分别为0.26和0.36 eV,预示着吸附CO_2分于易于解离形成CO分子和O原子. The adsorption and dissociation of CO2 on the α-U(001) surface at 0.25 monolayer (ML) coverage was studied using density functional theory (DFT) within the generalized gradient approximation (GGA), Stable structures and corresponding energies of CO2 adsorbed on the α-U(001) surface were obtained while the transition state and corresponding energy barrier for CO2 dissociation was determined. We discussed the interaction mechanism between CO2 and the α-U(001) surface. We found that CO2 strongly chemisorbed onto the α-U(001) surface in a multi-bonding manner with adsorption energies of 1.24-1.67 eV and the degree of C-- O bond activation depended on the degree of electron transfer from surface to the adsorbed CO. The interaction between the U atoms and the CO2 molecules mainly comes from the population of the CO2 2πu lowest unoccupied molecular orbital (LUMO) by U electrons with CO2 2πu/1πg/3σ-U 6d orbital hybridization. The dissociative adsorption energies for the CO2 adsorbed on the hollow1 and hollow2 sites with three C-- U bonds and six O-- U bonds (H1-C3O6 and H2-C3O6 ) are 3.15 and 3.13 eV, respectively. The corresponding dissociation barriers are 0.26 and 0.36 eV, which indicates that the dissociation of adsorbed CO2 into CO and O occurs easily.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2011年第10期2319-2325,共7页 Acta Physico-Chimica Sinica
基金 国防科技重点实验室基金(9140C6601010901) 中国工程物理研究院科学技术基金(2008A0301013)资助项目~~
关键词 密度泛函理论:α-U(001)表面:CO2分子: 吸附 Density functional theory α-U(001) surface Carbon dioxide Adsorption
  • 相关文献

参考文献25

  • 1McLean, W.; Colmenares, C. A.; Smith, R. L. Phys. Rev. B 1982, 25, 8.
  • 2Gouder, T.; Colmenares, C.; Naegele, J. R.; Verbist, J. Surf Sci. 1989, 235, 280.
  • 3Huda, M. N.; Ray, A. K. Int. J. Quantum Chem. 2004, 102, 98.
  • 4Dholabhai, P. P.; Ray, A. K. J. Alloy. Compd. 2007, 444, 356.
  • 5Nie, J. L.; Xiao, H. Y.; Zu, X. T.; Fei, G. J. Phys: Condens. Matter 2008, 20, 445001.
  • 6Senanayake, S. D.; Soon, A.; Kohlmeyer, A.; Sohnel, T.; Idriss, H. J. Vac. Sci. Technol. A 2005, 23, 1078.
  • 7李赣 罗文华 陈虎翅.物理化学学报,26:1378-1378.
  • 8Blanter, M. S.; Glazkov, V. P.; Somenkov, V. A. The Physics of Metal and Metallography 2006, 101, 153.
  • 9Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
  • 10Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.

同被引文献384

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部