摘要
综合运用补充变量方法和基于条件概率矩阵迭代的嵌入Markov链方法研究了具有负顾客到达和RCH移除策略的离散时间GI/D—MSP/1/N排队系统.获得了稳态情形下正顾客到达前夕,任意时隙分点以及外部观测时刻的三种队长分布.并进一步讨论了可入系统正顾客的等待时间分布.最后通过几个特殊情形下的数值算例验证了计算方法理论分析的正确性.
Applying the supplementary variable technique and embedded Markov chain method based on the iteration of conditional probability matrix,we studied a discrete-time GI/D-MSP/1/N queuing system with negative customer arrival and RCH killing policy.Three kinds of queue length distributions, namely the queue length distribution at positive customer pre-arrival,arbitrary and outside observer's observation epochs,are obtained.Furthermore,we also considered the waiting time distribution of the accessible positive customer.Finally,we presented several numerical examples under some special cases to demonstrate the correctness of the theoretical analysis of this algorithm.
出处
《系统工程理论与实践》
EI
CSSCI
CSCD
北大核心
2011年第9期1753-1762,共10页
Systems Engineering-Theory & Practice
基金
国家自然科学基金(70871084)
教育部高校博士点专项研究基金(200806360001)
四川省教育厅自然科学基金重点项目(10ZA136)