期刊文献+

具有负顾客到达和RCH移除策略的GI/D—MSP/1/N离散时间排队系统 被引量:3

Discrete-time GI/D-MSP/1/N queuing system with negative customer arrival and RCH killing policy
原文传递
导出
摘要 综合运用补充变量方法和基于条件概率矩阵迭代的嵌入Markov链方法研究了具有负顾客到达和RCH移除策略的离散时间GI/D—MSP/1/N排队系统.获得了稳态情形下正顾客到达前夕,任意时隙分点以及外部观测时刻的三种队长分布.并进一步讨论了可入系统正顾客的等待时间分布.最后通过几个特殊情形下的数值算例验证了计算方法理论分析的正确性. Applying the supplementary variable technique and embedded Markov chain method based on the iteration of conditional probability matrix,we studied a discrete-time GI/D-MSP/1/N queuing system with negative customer arrival and RCH killing policy.Three kinds of queue length distributions, namely the queue length distribution at positive customer pre-arrival,arbitrary and outside observer's observation epochs,are obtained.Furthermore,we also considered the waiting time distribution of the accessible positive customer.Finally,we presented several numerical examples under some special cases to demonstrate the correctness of the theoretical analysis of this algorithm.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2011年第9期1753-1762,共10页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70871084) 教育部高校博士点专项研究基金(200806360001) 四川省教育厅自然科学基金重点项目(10ZA136)
关键词 补充变量方法 嵌入Markov链 离散时间Markov服务过程 负顾客 RCH移除策略 supplementary variable technique embedded Markov chain discrete-time Markovian service process negative customer RCH killing policy
  • 相关文献

参考文献13

  • 1Hunter J J. Mathematical Techniques of Applied Probability, Vol. II[M]. New York: Academic Press, 1983.
  • 2Gelenbe E. Queues with negative arrivals[J]. Journal of Applied Probability, 1991, 28:245 -250.
  • 3Harrison P G, Pitel E. The M/G/1 queue with negative customers[J]. Advances in Applied Probability, 1996, 28(2): 540-566.
  • 4Zhu Y J. Analysis on a type of M/G/1 models with negative arrivals[C]//Proceeding of the 27th Stochastic Process Conference, UK, 2001.
  • 5Yang W S, Chae K C. A note on the GI/M/1 queue with poisson negative arrivals[J]. Journal of Applied Probability, 2001, 38:1081 1085.
  • 6朱翼隽,顾庆凤.带RCE抵消策略的负顾客GI/M/1工作休假排队[J].江苏大学学报(自然科学版),2008,29(4):360-364. 被引量:10
  • 7Atencia I, Moreno P. The discrete-time Geo/Geo/1 queue with negative customers and disasters[J]. Computers & Operations Research, 2004, 31:1537 1548.
  • 8Atencia I, Moreno P. A single-server G-queue in discrete-time with geometrical arrival and service process[,]]. Performance Evaluation, 2005, 59:85 97.
  • 9朱翼隽,马丽,曲子芳,陈燕.负顾客可服务的Geom/Geom/1离散时间排队模型[J].江苏大学学报(自然科学版),2007,28(3):266-268. 被引量:7
  • 10Bocharov P P. Stationary distribution of a finite queue with recurrent flow and Markovian service[J]. Automat Remote Control, 1996, 57: 66-78.

二级参考文献10

  • 1朱翼隽,陈燕,胡波.具有负顾客的GI/M/1休假排队模型[J].江苏大学学报(自然科学版),2004,25(4):315-318. 被引量:10
  • 2田乃硕.休假随机服务系统[M].北京:北京大学出版社,2002.148-162.
  • 3Gelenbe E.Queues with negative arrivals[J].J Appl Prob,1991(28):245-250.
  • 4Atencia I,Moreno P.A single-server G-queue in discrete-time with geometrical arrival and service process[J].Performance Evaluation,2005,59:86-97.
  • 5Atencia I,Moreno P.The discrete-time Geo/Geo/1 queue with negative customers and disasters[J].Comput Oper Res,2004,31:1537-1548.
  • 6Liu Wenyuan, Xu Xiuli, Tian Naishuo. Stochastic decompositions in the M/M/1 queue with working vacations[ J]. Operations Research Letters, 2007, 35:595 - 600.
  • 7Yutaka Baba. Analysis of a GI/M/1 queue with multiple working vacations [ J ]. Operations Research Letters, 2005, 33:201 -209.
  • 8杜贞斌,朱翼隽,肖江,陈洋.负顾客的M/G/1排队模型[J].江苏大学学报(自然科学版),2002,23(3):91-94. 被引量:20
  • 9曲子芳,朱翼隽,杜贞斌.负顾客M/G/1可修排队系统[J].江苏大学学报(自然科学版),2003,24(3):20-23. 被引量:10
  • 10朱翼隽,陈燕.负顾客排队系统的研究进展[J].江苏大学学报(自然科学版),2004,25(1):48-51. 被引量:13

共引文献13

同被引文献38

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部