期刊文献+

1~21日龄黄羽肉鸡棉籽粕傅里叶近红外及化学成分净能预测模型研究 被引量:3

Prediction Models for Net Energy Value of Cottonseed Meal for Yellow-feathered Broilers Aged from 1 to 21 Days Using Fourier Near Infrared Spectroscopy and Chemical Composition
下载PDF
导出
摘要 本试验在用比较屠宰法实测25个棉籽粕样品净能(NE)值的基础上,旨在研究用傅里叶近红外(NIRS)和化学成分2种方法建立的NE预测模型的可行性,并比较2种预测模型的预测效果。1)棉籽粕NE值的测定采用维持NE(NEm)+沉积NE(NEp)的方法。其中NEm用回归法测定,设自由采食及限饲20%、40%、60%和80%5个采食梯度,NEp采用套算法测定;每个梯度和棉籽粕样品均设6个重复,每个重复2只鸡。试验动物为382只平均体重为(62.20±0.64)g的7日龄末空腹康达尔黄羽肉公鸡,试验期为7 d。2)分别建立自然状态和扩大水分背景的NIRS预测模型M1和M2。3)将25个棉籽粕样品的表观代谢能(AME)、粗蛋白质、粗脂肪、粗纤维、中性洗涤纤维、酸性洗涤纤维和灰分7种成分值与NE值进行一元和多元线性回归分析。结果如下:1)M1、M2的校正决定系数(R2cal)分别为0.999、0.985,校正标准差(RMSEE)分别为0.033、0.084 MJ/kg DM,交叉验证决定系数(R2cv)分别为0.966、0.967,交叉验证标准差(RMSECV)分别为0.120、0.117 MJ/kg DM,预测决定系数(R2val)分别为0.843、0.957,预测标准差(RMSEP)分别为0.260、0.136 MJ/kg DM,2个模型预测值与实测值配对t检验结果均不显著(P>0.05)。2)用化学成分结合AME建立的最佳预测方程的R2和RSD分别为0.985和0.093 MJ/kg DM。结果表明:1)应用NIRS和AME结合化学成分均能建立预测效果可靠的棉籽粕NE预测模型;2)NIRS所建M2模型的预测效果与AME结合化学成分所建模型相当。 This trial was to study the feasibility of establishing prediction models for the net energy(NE) values using Fourier near infrared spectroscopy(NIRS) and chemical composition on the basis of 25 cottonseed meal NE values measured by comparative slaughter experiment,and to compare the predictive results of them.1) NE was calculated as NE for maintenance(NEm) plus NE for deposition(NEp).The NEm was measured by regression method with 5 feeding levels including ad libitum feeding and restricted feeding by 20%,40%,60% and 80%,respectively.NEp was measured by the method of substitution.A total of 382 Kangdaer fasting yellow-feathered broilers at 7 days of age with average body weight of(62.20±0.64) g were randomly allotted into every level of cottonseed meal sample with 6 replicates each and 2 chickens in each replicate.The experiment lasted for 7 days.2) NIRS calibration models(M1 and M2) of NE were established under the natural condition and a larger moisture background,respectively.3) Predictive equations for apparent metabolizable energy(AME),crude protein(CP),ether extract(EE),crude fiber(CF),neutral detergent fiber(NDF),acid detergent fiber(ADF),and ash with NE were derived from the methods of one-dimensional and multivariate linear regressions.The results showed as follows: 1) the R2cal and root mean square error of calibration(RMSEE) of 2 models(M1/M2) were 0.999/0.985 and 0.033/0.084 MJ/kg DM,the R2cv and root mean square error of cross validation(RMSECV) were 0.966/0.967 and 0.120/0.117 MJ/kg DM,the R2val and root mean square error of prediction(RMSEP) were 0.843/0.957 and 0.260/0.136 MJ/kg DM,respectively,and the results of paired-samples t test of NIRS predictive values and determined values were not significantly different(P0.05).2) The R2 and the RSD of the optimum regression equations from chemical composition combined with AME were 0.985 and 0.093 MJ/kg DM,respectively.These results indicate as follows: 1) the two methods above can both establish NE predictive models of cottonseed meal with reliable results;2) the predictive accuracy of M2 is similar to the optimum equation from chemical composition combined with AME.
出处 《动物营养学报》 CAS CSCD 北大核心 2011年第9期1499-1504,共6页 CHINESE JOURNAL OF ANIMAL NUTRITION
基金 四川农业大学双支计划
关键词 黄羽肉鸡 NE 预测 近红外 水分校正 yellow-feathered broilers net energy prediction near infrared spectroscopy moisture calibration
  • 相关文献

参考文献4

二级参考文献43

  • 1褚小立,袁洪福,王艳斌,陆婉珍.近红外稳健分析校正模型的建立(Ⅰ)——样品温度的影响[J].光谱学与光谱分析,2004,24(6):666-671. 被引量:47
  • 2王和民,霍启光,李韶标,余惠琴,王建霞,杨淑华,林济华,封淑美,尹日燮.肉用雏鸡在绝食条件下的卵黄囊营养和维持需要[J].畜牧兽医学报,1994,25(1):13-19. 被引量:16
  • 3LU Wan-zhen, YUAN Hong-fu, XU Guang-tong, et al(陆婉珍,袁洪福,徐广通,等). Modem Near-Infrared Spectroscopy Analysis Technology(现代近红外分析技术). Beijing: Petrochemical Industry Press(北京:中国石化出版社), 2000.
  • 4Swierenga H, Wulfert F, De Noord O E. Anal. China. Acta, 2000, 411: 121.
  • 5Donnald A Bume, Emil W Ciurczak. Handbook of Near-Infrared Analysis. Second Edition, New York: Marcel Dekker, Inc., 2001.
  • 6Philip Williams, Karl Norris. Near Infrared Technology in the Agriculture and Foot Industries, AACC, inc. Minnesota: The American Association of Cereal Chemists, Inc., 2001.
  • 7Fales S L, Cummins D G. Agronomy Journal, 1982, 74: 585.
  • 8Delwiehe S R, Pitt R E, Norris K H. Cereal. Chem., 1992, 69(1): 107.
  • 9Gaines C C, Windham W W. Cereal Chem., 1998, 75(3) : 386.
  • 10YAN Yan-lu, ZHAO Long-lian, HAN Dong-hai, et al(严衍禄,赵龙莲,韩东海,等). Foundation and Application of Near Infrared Spectroscopy(近红外光谱分析基础与应用). Beijing: China Light Industry Press(北京:中国轻工业出版社), 2005.

共引文献31

同被引文献33

  • 1ADEDOKUN S A,UTTERBACK P,PARSONS C M,et al.Comparison of endogenous amino acid flow in broilers,laying hens and caecectomised roosters[J].British Poultry Science,2009,50(3):359-365.
  • 2FARRELL D J.Rapid determination of metabolizable energy of foods using cockerels[J].British Poultry Science,1978,19(3):303-308.
  • 3VASAN P,DUTTA N,MANDAL A B,et al.Comparative digestibility of amino acids of maize,sorghum,finger millet and pearl millet in cockerels and Japanese quails[J].British Poultry Science,2008,49(2):176-180.
  • 4HOAI H T,KINH L V,VIET T Q,et al.Determination of the metabolizable energy content of common feedstuffs in meat-type growing ducks[J].Animal Feed Science and Technology,2011,170(1/2):126-129.
  • 5LUCAS D M,TAYLOR M L,HARTNELL G F,et al.Broiler performance and carcass characteristics when fed diets containing lysine maize (LY038 or LY038×MON810),control or conventional reference maize[J].Poultry Science,2007,86(10):2152-2161.
  • 6LOSADA B,GARCíA-REBOLLAR P,áLVAREZ C,et al.The prediction of apparent metabolisable energy content of oil seeds and oil seed by-products for poultry from its chemical components,in vitro analysis or near-infrared reflectance spectroscopy[J].Animal Feed Science and Technology,2010,160(1/2):62-72.
  • 7HUANG K H,LI X,RAVINDRAN V,et al.Comparison of apparent ileal amino acid digestibility of feed ingredients measured with broilers,layers,and roosters[J].Poultry Science,2006,85(4):625-634.
  • 8PARSONS C M,POTTER L M,BLISS B A.A modified voluntary feed intake bioassay for determination of metabolizable energy with Leghorn roosters[J].Poultry Science, 1984,63(8):1610-1616.
  • 9CARRé B,GOMEZ J,CHAGNEAU A M.Contribution of oligosaccharide and polysaccharide digestion and excreta losses of lactic acid and short chain fatty acids to dietary metabolisable energy values in broiler chickens and adult cockerels[J].British Poultry Science,1995,36(4):611-629.
  • 10中国农业科学院北京畜牧兽医研究所,中国饲料数据库情报中心,动物营养学国家重点实验室.中国饲料成分及营养价值表(2012年第23版)[J].中国饲料,2012,23:18-39.(6).

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部