摘要
为实现弹道导弹制导计算中的扰动引力快速赋值,提出了一种基于标准弹道的"漏斗形"有限单元构建方法,将标准弹道附近区域进行剖分,根据单元所确定的节点位置及节点扰动引力值内插快速计算"漏斗"内实际弹道扰动引力.分析了该方法对不同射程、射向及发射位置情况下全程弹道扰动引力赋值的适应性,提出了有限单元剖分准则.仿真结果表明,对射程为12 000km的弹道,仅需存储696个数据即可保证全程扰动引力赋值误差对应落点偏差小于10m.在一般配置的微机上,主动段和被动段单点扰动引力赋值时间分别为2.66μs和19.5μs.该方法满足弹上扰动引力快速赋值的速度、精度和弹载计算机存储量要求.
To realize the fast calculation of gravity disturbance in guidance for ballistic missile,a funnellike finite element partition method based on a standard trajectory was proposed to partition the space around the standard trajectory.The gravity disturbance of the real trajectory in funnellike finite element was interpolated rapidly according to the positions and gravity values of the element nodes.The adaptability of the method was analyzed to gravity disturbance assignment of the trajectory with different ranges,launching angles,and launching positions.A finite element partition criterion was proposed.Simulations indicate that the method can keep the impact point deviation within 10 m with 696 vertex data for a 12 000 km range trajectory.The times for calculating the gravity disturbance of one position in powered phase and unpowered phase are 2.66 μs and 19.5 μs respectively.The method meets the guidance requirements of computation efficiency,computation accuracy,and computer memory of missile.
出处
《弹道学报》
EI
CSCD
北大核心
2011年第3期18-23,共6页
Journal of Ballistics
关键词
弹道导弹
扰动引力
有限元法
快速赋值
ballistic missile
gravity disturbance
finite element method
fast assignment