期刊文献+

弹道导弹全程扰动引力快速赋值方法 被引量:10

Research on Fast Assignment of Gravity Disturbance for Full-Range Trajectory of Ballistic Missile
原文传递
导出
摘要 为实现弹道导弹制导计算中的扰动引力快速赋值,提出了一种基于标准弹道的"漏斗形"有限单元构建方法,将标准弹道附近区域进行剖分,根据单元所确定的节点位置及节点扰动引力值内插快速计算"漏斗"内实际弹道扰动引力.分析了该方法对不同射程、射向及发射位置情况下全程弹道扰动引力赋值的适应性,提出了有限单元剖分准则.仿真结果表明,对射程为12 000km的弹道,仅需存储696个数据即可保证全程扰动引力赋值误差对应落点偏差小于10m.在一般配置的微机上,主动段和被动段单点扰动引力赋值时间分别为2.66μs和19.5μs.该方法满足弹上扰动引力快速赋值的速度、精度和弹载计算机存储量要求. To realize the fast calculation of gravity disturbance in guidance for ballistic missile,a funnellike finite element partition method based on a standard trajectory was proposed to partition the space around the standard trajectory.The gravity disturbance of the real trajectory in funnellike finite element was interpolated rapidly according to the positions and gravity values of the element nodes.The adaptability of the method was analyzed to gravity disturbance assignment of the trajectory with different ranges,launching angles,and launching positions.A finite element partition criterion was proposed.Simulations indicate that the method can keep the impact point deviation within 10 m with 696 vertex data for a 12 000 km range trajectory.The times for calculating the gravity disturbance of one position in powered phase and unpowered phase are 2.66 μs and 19.5 μs respectively.The method meets the guidance requirements of computation efficiency,computation accuracy,and computer memory of missile.
出处 《弹道学报》 EI CSCD 北大核心 2011年第3期18-23,共6页 Journal of Ballistics
关键词 弹道导弹 扰动引力 有限元法 快速赋值 ballistic missile gravity disturbance finite element method fast assignment
  • 相关文献

参考文献7

二级参考文献14

  • 1[3]Martin T,Hagnn,Howard B,Demuth,Mark H,Beale.Neural Net-work Design[M].Beijing:China Machine Press,2002,9:197-257.
  • 2[4]Battiti R.First and second-order methods for learning:Between steep-est descent and Newton's method[J].Neural Computation,1992,4(2):141-166.
  • 3[5]Hagan M T and Menhej M.Training feedforward network with the Mar-quardt algorithm[J].IEEE Tansactions on Neural Networks,1994,5(6).
  • 4袁曾任.人工神经网络及其应用[M].北京:清华大学出版社,2000..
  • 5海斯卡涅WA,莫里兹H.物理大地测量学[M].WH Freeman and comp,1967.
  • 6Benneff M M,Davis P W.Minuteman Gravity Modeling[A].Proceeding AIAA Guidance and Control Conference[C].San Diego CA,1976.400-404.
  • 7John Junkins L.Investigation of Finite-Element Representations of the Geopotential[J].AIAA Journal,1976,14(6):803-808.
  • 8王东明.重力场理论的一些进展[D].北京:北京大学,1999,11:15-20.
  • 9陆仲连,吴晓平等.弹道导弹重力学[M].八一出版社,1993.6:162-163.
  • 10Martin T. Hagan, Howard B. Demuth, Mark H. Beale. Neural Network Design [ M ]. Beijing: China Machine Press ,2002,9 : 197 - 257.

共引文献29

同被引文献57

引证文献10

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部