期刊文献+

不含4-9圈的平面图的L(p,q)-标号(英文)

The L(p,q)-labeling of Planar Graphs without Cycles of Length from 4 to 9
下载PDF
导出
摘要 令p≥q是两个正整数.用Δ(G)和λp,q(G)分别记平面图G的最大度和L(p,q)-标号数.文章证明了若G为不含i-圈,4≤i≤9的平面图,则λp,q(G)≤(2q-1)Δ(G)+8p-4.这一结果推出χ(G2)≤Δ(G)+5.因此对于这样一类图部分地证实了Wegner的猜想[2]. Let p,q be two positive integers with p≥q,and Δ(G) and λp,q(G) denote the maximum degree and the L(p,q)-labeling number of a planar graph G,respectively.In this paper,we show that if G is a planar graph without i-cycles,4≤i≤9,then λp,q(G)≤(2q-1)Δ(G)+8p-4.This result implies χ(G2)≤Δ(G)+5.So Wegner's conjecture[2] is partially confirmed for such graphs.
出处 《应用数学》 CSCD 北大核心 2011年第4期665-670,共6页 Mathematica Applicata
基金 the National Natural Foundation Science of China(10971198)
关键词 L(p q)-标号 平面图 Wegner猜想 L(p q)-labeling Planar graphs Cycles Wegner's conjecture
  • 相关文献

参考文献12

  • 1Bondy J A,Murty U S R. Graph Theory with Applicationsl-M]. New York: Macmillan, 1976.
  • 2Wegner G. Graphs with given diameter and coloring problem[R]. Dortmund: University of Dortmund, 1977.
  • 3Thomassen G. Applications of Tutte cycles[R]. Denmark:Technical University of Denmark, 2001.
  • 4Van den Heuvel J, McGuinness S. Coloring of the square of a planar graph[J]. J. Graph Theory, 2003,42 : 110-124.
  • 5Molloy M,Salavatipour M R. A bound on the chromatic number of the square of a planar graph[J]. J. Combinatorial Theory : B, 2005,94 : 189-213.
  • 6Hale W K. Frequency assignment : Theory and applications[J]. Proc. IEEE 1980,68: 1497-1514.
  • 7Griggs J R, Yeh R K. Labeling graphs with a condition at distance 2[J]. SIAM J. Discrete Mathematics, 1992,5 : 586-595.
  • 8Kral D,Skrekovski R. A theorem about channel assignment problem[j]. SIAM J. Discrete Mathematics, 2003,16(3) :426-437.
  • 9Goncalves D. On the L(p,1) -labelling of graphs[J]. Discrete Mathematics,2008,308(8): 1405-1414.
  • 10WANG Weifan,Lih K W. Labeling planar graphs with conditions on girth and distance two[J]. SIAM J. Discrete Mathematics, 2003,17 (2) : 264-275.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部