期刊文献+

L_1范局部线性嵌入 被引量:5

L1-norm locally linear embedding
原文传递
导出
摘要 数据降维问题存在于包括机器学习、模式识别、数据挖掘等多个信息处理领域。局部线性嵌入(LLE)是一种用于数据降维的无监督非线性流行学习算法,因其优良的性能,LLE得以广泛应用。针对传统的LLE对离群(或噪声)敏感的问题,提出一种鲁棒的基于L1范数最小化的LLE算法(L1-LLE)。通过L1范数最小化来求取局部重构矩阵,减小了重构矩阵能量,能有效克服离群(或噪声)干扰。利用现有优化技术,L1-LLE算法简单且易实现。证明了L1-LLE算法的收敛性。分别对人造和实际数据集进行应用测试,通过与传统LLE方法进行性能比较,结果显示L1-LLE方法是稳定、有效的。 The problem of dimensionality reduction arises in many fields of information processing, including machine learning, pattern recognition, data mining etc. Locally linear embedding (LLE) is an unsupervised and nonlinear learning algorithm for dimensionality reduction, well-known for its outperformance. Unlike classical LLE, which is based on the L2- norm, a novel L1-norm based LLE (L1-LLE) algorithm is proposed in this article, which is robust to outliers because it utilizes the L1-norm, which is less sensitive to outliers. The proposed L1-norm optimization technique is intuitive, simple, and easy to implement. It is also proven to find a globally minimal solution. The proposed method is applied to several data sets and the performance is compared to those of other conventional methods.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第10期1802-1811,共10页 Journal of Image and Graphics
基金 国家自然科学基金项目(60975027 60903100) 宁波市自然科学基金项目(2009A610080)
关键词 降维 L1-范数 流形学习 局部线性嵌入 鲁棒性 dimensionality reduction L1-norm manifold learning locally linear embedding robust
  • 相关文献

参考文献14

  • 1Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction [ J ]. Science, 2000, 290(5500) :2319-2323.
  • 2Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science, 2000, 290 ( 5500 ) : 2323-2326.
  • 3Chang H, Yeung D Y. Robust locally linear embedding [ J ]. Pattern Recognition, 2006, 39 (6) : 1053-1065.
  • 4Yin J S, Hu D W, Zhou Z T. Manifold learning using growing locally linear embedding [ C ]//Proc. of the 2007 IEEE Symp. on Computational Intelligence and Data Mining. Honolulu: IEEE Press, 2007 : 73-80.
  • 5Varini C, Degenhard A, Nattkemper T W. Isolle: LLE with geodesic distance [ J]. Neuro Computing, 2006, 69 : 1768-1771.
  • 6文贵华,陆庭辉,江丽君,文军.基于相对流形的局部线性嵌入[J].软件学报,2009,20(9):2376-2386. 被引量:5
  • 7Wen G H. Relative transformation-based neighborhood optimization for isometric embedding [ J ]. Neuro Computing,2009, 72(4-6) : 1205-1213.
  • 8朱明旱,罗大庸,易励群,王一军.基于正交迭代的增量LLE算法[J].电子学报,2009,37(1):132-136. 被引量:11
  • 9Kwak N. Principal component analysis based on Ll-norm maximization [J]. IEEE Trans. Pattern Anal. Mach. Intell. , 2008, 30(9) : 1672-1680.
  • 10Li Xuelong, Pang Yanwei, Yuan Yuan. Ll -norm-based 2DPCA [J]. IEEE Trans. on Systems, Man, and Cybernetics, Part B, 2010, 40(4) : 1170-1175.

二级参考文献36

  • 1赵连伟,罗四维,赵艳敞,刘蕴辉.高维数据流形的低维嵌入及嵌入维数研究[J].软件学报,2005,16(8):1423-1430. 被引量:54
  • 2何力,张军平,周志华.基于放大因子和延伸方向研究流形学习算法[J].计算机学报,2005,28(12):2000-2009. 被引量:24
  • 3徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51. 被引量:68
  • 4邵超,黄厚宽,赵连伟.一种更具拓扑稳定性的ISOMAP算法[J].软件学报,2007,18(4):869-877. 被引量:20
  • 5Barnett V, Lewis T. Outliers in Statistical Data[M] . New York : John Wiley and Sons, Inc, 1994
  • 6Preparata F, Shamos M I. Computational Geometry : an Introduction [M] . New York : Springer-Verlag, 1988
  • 7Knorr E M, Ng R T. Algorithms for mining distance-based outliers in large datasets[ A]. Proceedings of the 24th International Conference on Very Large Data Bases [ C ]. New York : Morgan Kaufmann, 1998. 392 - 403
  • 8Breunig Markus M B, Kriegel Hans Peter, Ng Raymond T, et al . LOF: identifying density-based local outliers [ A] . Chen W, Naughton J F, Bemstein P A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data [ C ]. Dallas, Texas : ACM Press, 2000:93- 104
  • 9Papadimitriou Spiros, Kitagawa Hiroyuki, Gibbons Phillip B. LOCI: fast outlier detection using the local correlation integral [ A ] . Proceedings of the 19th International Conference on Data Engineering [C] .2003. 315 - 326
  • 10Agrawal R, Gehrke J, Gunopulos D, et al. Automatic subspace clustering of high dimensional data for data mining applications[ A]. Haas L M, Tiwary A. Proc of the ACM SIGMOD International Conference on Management of Data[ C ]. Seattle: ACM Press, 1998: 94 - 105

共引文献18

同被引文献57

  • 1李锋,田大庆,王家序,杨荣松.基于有监督增量式局部线性嵌入的故障辨识[J].振动与冲击,2013,32(23):82-88. 被引量:7
  • 2谭璐,吴翊,易东云.稳健局部线性嵌入方法[J].国防科技大学学报,2004,26(6):91-95. 被引量:13
  • 3邓宝松,高宇,杨冰,吴玲达.序列图像中三维空间点的精确重建方法[J].计算机工程,2007,33(11):18-20. 被引量:3
  • 4WRIGHT J, PENG Yi-gmg, MA Yi. Robust principal component analysis : exact recovery of corrupted low-rank matrices by convex opti- mization[ C ]//Advance in Neural Information Processing Systems. 2009 : 2080- 2088.
  • 5WU Xiao-jun,JOSEF K,YANG Jing-yu,et al. A new direct LDA (D- LDA) algorithm for feature extraction in flce recognition [ C ]//Proe of the 17th International Conference on Pattern Recognition. 2004:545- 548.
  • 6HYVARINEN A, OJA E. Independent component analysis: algo- rithms and applications [Jl. Noural Networks,2000,'13(4-5) :411- 430.
  • 7ZHAO Ying,ATKESON C G. Implementing projection pursuit learning [J]. IEEE Trans on Neural Networks,1996,7(2) :362-373.
  • 8NICOLAS G, FRANCOIS G. A multilevel approach Ior nonnegative matrix faetorization [ J ]. Journal of Computational and Applied Mathematics, 2012,236 ( 7 ) : 1708-1723.
  • 9BURGES C J C. Dimension reduction:a guided tour[ J ]. Founda- tions and Trends in Machine Learning,2009,2(4) :275-365.
  • 10AILON N, CHAZELLE B. Faster dimension reduction [ J ]. Communi- cations of the ACM,2010,53(2) :97-104.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部