期刊文献+

3DDCT变换下的图像去噪与增强方法 被引量:3

Approach to Image Denoising and Enhancement Based on 3DDCT
下载PDF
导出
摘要 为了解决传统图像去噪算法存在边缘纹理信息损失的问题,根据图像平滑区域DCT非零系数个数较少的特点,提出了基于3DDCT的图像去噪及增强处理方法。该方法首先依据l2范式将含噪图像的相似区域块构成块群;再根据块群中块内像素的相关性,对各块进行2DDCT变换并利用阈值进行首次去噪,根据群内块间对应像素的相似性,对块群进行一维DDCT得到去噪且增强的图像。与传统算法相比,该算法在去噪过程中扩大高频非零系数进而增强边缘纹理信息,提高了图像的视觉效果。 To solve the problem of the loss of information in texture areas using traditional image denoising algorithms, we propose an algorithm for image denoising and enhancing based on 3DDCT according to the characteristic that the number of non-zero discrete Cosine transform (DCT) coefficients in smooth regions is fewer. First, similar blocks of the images is put to a block group according to l2 normal form; second, 2DDCT transformation is applied to each block and the threshold for the fin'st denoising is used according to the correlation of pixels within the block; after that, 1DDCT transformation is applied on block groups according to the similarity between the corresponding pixels; then the threshold is used for a second time denoising; third, a power expansion is made to the non-zero coefficients in high frequency regions of 3D transform domain; f'mally, the proceed image is combined with Kaiser Window function. Compared with traditional algorithms, the new algorithm has a better visual performance because of its abilities to enlarge non-zero DCT coefficients in high frequency areas and to enhance information in texture and edge areas at the same time.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第5期742-746,共5页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60773168) 四川省科技支撑项目(2010GZ0169)
关键词 3D离散余弦变换 图像去噪 图像增强 α次方 Kaiser窗口 3DDCT transform image denoising image enhancement α power Kaiser window
  • 相关文献

参考文献1

二级参考文献22

  • 1CCIR. Method for the subjective assessment of the quality of television pictures recommendation 500-3 [A ]. In:Recommendations and Reports of the CCIR[S], International Telecommunication Union,Geneva, 1986.
  • 2Eskicioglu A M, Fisher P S. Image quality measures and their performance[J]. IEEE Transactions on Communication, 1995,43(12) : 2959-2965.
  • 3Marmolin H. Subjective MSE measures[J]. IEEE Transactions on Systems, Man and Cybernetics, 1986,16(3) : 486-489.
  • 4Hall C F, Hall E L. A nonlinear model for the spatial characteristics of the human visual system [J].IEEE Transactions Systems Manunication Cybernet, 1977, 7:161-170.
  • 5Crranrath D J. The role of human visual models in image processing[J]. Proceeding of IEEE,1981,69(5) :552-561.
  • 6Daly S. The visible differences predictor: An algorithm for the assessment of image fidelity [A]. In: Proceedings of SHE,Symposium on Model-based Vision[C], Boston, USA, 1992,1616:2-15.
  • 7Lai Yung-kai, Jay Kuo C C. A harr wavelet approach to compressed image quality measurement [ J]. Journal of Visual Communication and Image representation,2000,11(1):17-40.
  • 8Chin F Z C, Xydeas C S. Dual-mode image quality assessment metric [A]. In: IEEE Region 8 International Symposium on Video/Image Processing and Multimedia Communications [C],Zadar, Croatia, 2002,6:137-140.
  • 9Naranjan Damer-venkata, Thomas D. Kitt, Wilsons, et al.Image quality assessment based on a degradation model [J].IEEE Transactions. on Image Proceedings, 2000,9 (4) : 636-650.
  • 10Karunasekera S A, Kingsburg N G. A distortion measure for blocking artifacts in images based on human visual sensitivity[J]. IEEE Transactions on Image Proceesing, 1995,4(6) : 713-724.

共引文献56

同被引文献29

  • 1丰明坤.基于小波变换的图像去噪虚拟仪器系统[J].光电子技术,2009,29(1):23-25. 被引量:2
  • 2黄书先.基于MATLAB平台的可视化图像处理系统设计方法[J].长江大学学报(自然科学版),2005,2(4):158-160. 被引量:2
  • 3Chan R H, Ho C W,Nikolova M. Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization[J], IEEE Transactions on Image Processing, 2005,14(10) : 1479-1485.
  • 4Hamza A B,Krin H. Image denoising: a nonlinear robust statistical approach[J], IEEE Transactions on Signal Processing, 2001,49.12):3045-3054.
  • 5Healey G E,Kondepudy R.Radiometric ccd camera calibration andnoise estimation[J].IEEE TPAMI,1994,16(3):67-276.
  • 6Tsin Y,Ramesh V,Kanade T.Statistical calibration of ccd imagingprocess[C].Proc.CVPR,2001,1:480-487.
  • 7Grossberg M D,Nayar S K.What is the space of camera responsefunctions[C].Proc.CVPR,2003,2:11-602.
  • 8Shen H,Zhang L.A map-based algorithm for destriping and in-painting of remotely sensed images[J].IEEE TGRS,2009,47(5):1492-1502.
  • 9Buades A,Coll B,Morel J M.A non-local algorithm for image de-noising[C].Proc.CVPR 2005,2:60-65.
  • 10Portilla J,Strela V,Wainwright M J.Image denoising using scalemixtures of Gaussians in the wavelet domain[J].IEEE TIP,2003,12(11):1338-1351.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部