Efficient Fast Independent Component Analysis Algorithm with Fifth-Order Convergence
Efficient Fast Independent Component Analysis Algorithm with Fifth-Order Convergence
摘要
Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by the quadratic convergence of Newton iteration method. In order to improve the convergence speed and the separation precision of the fast ICA, an improved fast ICA algorithm is presented. The algorithm introduces an efficient Newton's iterative method with fifth-order convergence for optimizing the contrast function and gives the detail derivation process and the corresponding condition. The experimental results demonstrate that the convergence speed and the separation precision of the improved algorithm are better than that of the fast ICA.
Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by the quadratic convergence of Newton iteration method. In order to improve the convergence speed and the separation precision of the fast ICA, an improved fast ICA algorithm is presented. The algorithm introduces an efficient Newton's iterative method with fifth-order convergence for optimizing the contrast function and gives the detail derivation process and the corresponding condition. The experimental results demonstrate that the convergence speed and the separation precision of the improved algorithm are better than that of the fast ICA.
参考文献10
-
1A. Hyvarinen,E. Oja."A fast fixed-point algorithm for independent component analysis,"[].Neural Computation.1997
-
2S. Weerakoon,T. G. I. Fernando."A variant of Newton’’s method with accelerated third-order convergence,"[].Journal of Applied Mathematics.2000
-
3M. Dehghan,M. Hajarian."Some derivative free quadratic and cubic convergence iterative formulas for solving nonlinear equations,"[].Computational & Applied Mathematics.2010
-
4Choi S,Cichocki A,Park HM,Lee SY.Blind Source Separation and Independent Component Analysis: A Review[].Neural Information Processing-Letters and Review.2005
-
5Hyvarinen A,Oja E.Independent Component Analysis: Algorithms and Application[].Neural Networks.2000
-
6Kou J S,Li Y T,Wang X H.Third-order modifications of Newton’s method[].Journal of Applied Mathematics.2007
-
7Comon P.Independent component analysis—a new concept?[].Signal Processing.1994
-
8Hyvarinen A.Fast and robust fixed-point algorithm for independent component analysis[].IEEE Transactions on Neural Networks.1999
-
9Frontini,M.,Sormani,E.Some variants of Newton’s method with third-order convergence[].Applied Mathematics and Computation.2003
-
10L.Fang,L.Sun,G.He.An efficient Newton-type method with fifth-order for solving nonlinear equations[].Computational and Applied Mathematics.2008
-
1陈柏礼,潘丰.模拟移动床集散控制系统的设计[J].江南大学学报(自然科学版),2005,4(4):423-426. 被引量:1
-
2段先知,丁亚军,钱盛友,李勇,邹孝.改进型快速ICA算法与数学形态学结合的图像分割方法[J].微电子学与计算机,2015,32(2):80-83. 被引量:3
-
3谢勤岚,陈红,陈亚光.快速ICA算法在ERP信号处理中的应用[J].武汉理工大学学报(交通科学与工程版),2003,27(4):540-543. 被引量:3
-
4段阳,刘松,侯力,张祺,唐艳.基于支持向量机的异步电机转子故障诊断[J].煤矿机械,2011,32(3):250-252. 被引量:1
-
5魏巍,刘学伟.基于独立分量分析的工频干扰消除技术[J].计算机应用研究,2009,26(1):227-229. 被引量:14
-
6刘金华,佘堃.一种采用小波滤波的独立分量分析算法[J].电子测量与仪器学报,2010,24(1):39-44. 被引量:38
-
7万相奎,季忠,梁小容,秦树人.独立分量分析及其在诱发电位提取中的应用[J].重庆大学学报(自然科学版),2004,27(8):7-10. 被引量:2
-
8赵志强,颜学龙.FastICA与PCA结合的语音盲信号分离技术[J].计算机应用与软件,2012,29(12):144-146. 被引量:2
-
9谢松云,张伟平,潘辉.ICA方法用于脑电信号α波提取的研究[J].计算机工程与应用,2008,44(29):217-219. 被引量:3
-
10徐毅琼,王波,李弼程.基于改进的独立分量分析的人脸识别方法[J].数据采集与处理,2006,21(2):184-187. 被引量:2