期刊文献+

EEMD的非平稳信号降噪及其故障诊断应用 被引量:27

Signal denoising based on EEMD for non-stationary signals and its application in fault diagnosis
下载PDF
导出
摘要 针对往复机械振动信号的瞬时非线性、非平稳特性,提出一种基于总体平均经验模式分解(Ensemble Empirical Mode Decomposition,EEMD)与过零率分析相结合的自适应降噪方法,并与能量矩、支持向量机(Support Vector Machine,SVM)结合应用于故障诊断。利用EEMD对非平稳振动信号进行自适应的分解,有效抑制经典经验模式分解的可能出现的模式混叠现象,再以所得的各固有模式分量(Intrinsic Mode Function,IMF)的过零率作为噪声评判准则,重构过零率阈值范围内的非噪声分量以实现信号降噪。另外,计算非噪声分量的能量矩作为故障特征提输入二叉树支持向量机实现的柴油机故障诊断验证了该方法有效性。 According to the instantaneous nonlinear and non-stationary characteristics of the vibration signals from reciprocating machine with fault,a novel adaptive denoising method based on Ensemble Empirical Mode Decomposition(EEMD) and zero-crossing detection is proposed and combined with energy moment and Support Vector Machine(SVM) to apply in fault diagnosis.With the method of EEMD, the non-stationary vibration signals are adaptively decomposed into a finite number of Intrinsic Mode Function(IMF),which can alleviate model mixing that may appear in conventional EMD rnethod.It calculates the zero-crossing ratio of every IMF components and compares them to the predetermined threshold value, the IMF compo- nents which are satisfied for request of threshold value are obtained.That means make zero-crossing rate serve as the criterion to separate desirable components from jamming ones.So the denoised signal is obtained through reconstructing desirable IMF components.Otherwise, the energy moments of desirable IMF components are extracted as the input vector of Binary Tree Support Vector Machine(BTSVM) to realize the fault diagnosis of diesel engine, which validates the effectiveness of the method.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第28期223-227,共5页 Computer Engineering and Applications
基金 武警工程学院重点科研项目(No.WXK2009-17)
关键词 往复机械 信号降噪 特征提取 过零率分析 总体平均经验模式分解 能量矩 reciprocating machinery signal denoising fault feature extraction zero-crossing rate Ensemble Empirical Mode Decomposition (EEMD) energy moment
  • 相关文献

参考文献13

  • 1陆金铭,王醇涛,周海港.基于EMD的柴油机失火故障诊断[J].江苏科技大学学报(自然科学版),2009,23(3):234-238. 被引量:14
  • 2Lin Jing, Qu Liangsheng.Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis[J]. Journal of Sound and Vibration, 2000,234( 1 ) : 135-148.
  • 3唐进元,陈维涛,陈思雨,周炜.一种新的小波阈值函数及其在振动信号去噪分析中的应用[J].振动与冲击,2009,28(7):118-121. 被引量:55
  • 4Ai Shufeng, Li Hui.Gear fault detection based on ensemble em pirical mode decomposition and Hilbert-Huang transform[J] 1EEE Computer Society,2008,64:173-177.
  • 5Huang N E,Attoh-Okine N O.Hilbert-Huang transform in engi neering[M].[S.I.] : CRC Press, 2005.
  • 6Wu Zhaohua, Huang N E.A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proc R Soc Lond A,2004,460:1597-1611.
  • 7Wu Zhaohua,Huang N E.Ensemble empirical mode decomposition:a noise assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1 ( 1 ) : 1-41.
  • 8Huang N E,Zheng Shen, Long S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc R Soc Lond A, 1998: 903-995.
  • 9Lei Yaguo, He Zhengjia, Zi Yanyang.Application of the EEMD method to rotor fault diagnosis of rotating machinery[J].Mechanical Systems and Signal Processing,2009,23:1327-1338.
  • 10Boudraa A O, Cexus J C.Denoising via empirical mode decomposition[C]//IEEE International Symposium on Control, Communication and Signal Processing(ISCCSP06),Morocco,2006.

二级参考文献29

共引文献113

同被引文献258

引证文献27

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部