期刊文献+

Excellent polarization-independent reflector based on guided mode resonance effect

Excellent polarization-independent reflector based on guided mode resonance effect
原文传递
导出
摘要 A broad band polarization-independent reflector working in the telecommunication C+L band is proposed using the guided mode resonance effect of a periodic surface relief element deposited by a layer of silicon medium. It is shown that this structure can provide high reflection (R 〉 99.5%) and wide angular bandwidth (θ≈ 20°, R 〉 98%) for both TE and TM polarizations over a wide spectrum band 1.5 μm-l.6 μm. Furthermore, it is found by rigorous coupled wave analysis that the polarization-independent reflector proposed here is tolerant of a deviation of grating thickness, which makes it very easy to fabricate in experiments. A broad band polarization-independent reflector working in the telecommunication C+L band is proposed using the guided mode resonance effect of a periodic surface relief element deposited by a layer of silicon medium. It is shown that this structure can provide high reflection (R 〉 99.5%) and wide angular bandwidth (θ≈ 20°, R 〉 98%) for both TE and TM polarizations over a wide spectrum band 1.5 μm-l.6 μm. Furthermore, it is found by rigorous coupled wave analysis that the polarization-independent reflector proposed here is tolerant of a deviation of grating thickness, which makes it very easy to fabricate in experiments.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期277-280,共4页 中国物理B(英文版)
基金 supported by the Youth Science Research Foundation of China University of Mining and Technology (Grant No. 2009A058) the Fundamental Research Funds for the Central Universities (Grant No. 2010Qnb06) the Natural Science Foundation of Shanghai Committee of Science and Technology (Grant No. 10ZR1433500)
关键词 polarization-independent reflector guided mode resonance rigorous coupled wave anal-ysis polarization-independent reflector, guided mode resonance, rigorous coupled wave anal-ysis
  • 相关文献

参考文献13

  • 1Huang M C Y, Zhou Y and Chang-Hasnain C J 2007 Na- ture Photon. 1 119.
  • 2Quack N, Blunier S, Dual J, Arnold M, Felder F, Ebneter C, Rahim M and Zogg H 2008 J. Opt. A: Pure Appl. Opt. 10 044015.
  • 3Mateus C F R, Huang M C Y, Chen L, Chang-Hasnain C J and Suzuki Y 2004 IEEE Photon. Technol. Lett. 16 1676.
  • 4Cheben P, Janz S, Xu D, Lamontagne B, DelUge A and Tanev S 2006 IEEE Photon. Technol. Lett. 18 13.
  • 5Horng R H, Wang W K, Huang S Y and Wuu D S 2006 IEEE Photon. Technol. Lett. 18 457.
  • 6Ocampo J M Z, Vaccaro P O, Fleischmann T, Wang T S, Ohnishi T, Sugimura A, Izumoto R, Hosoda M and Nashima S 2003 Appl. Phys. Lett. 83 3647.
  • 7de Sterke C M, van der Laan C J and Frankena H J 1983 Appl. Opt. 22 595.
  • 8Ding Y and Magnusson R 2004 Opt. Express 12 1885.
  • 9Wu H, Mo W, Hou J, Gao Di, Hao R, Jiang H, Guo R, Wu W and Zhou Z 2010 J. Opt. A: Pure Appl. Opt. 12 045703.
  • 10Moharam M G, Grann E B, Pommet D A and Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部