期刊文献+

全局孤立性和局部同质性图表示的随机游走显著目标检测算法 被引量:11

Graph Presentation Random Walk Salient Object Detection Algorithm Based on Global Isolation and Local Homogeneity
下载PDF
导出
摘要 目前的显著性检测算法主要依赖像素间的相互对比,缺乏对显著目标自身特性的分析理解.依据显著目标是显眼、紧凑和完整的思路,提出一种基于目标全局孤立性和局部同质性的随机游走显著目标检测算法,将视觉显著性检测公式化为马尔科夫随机游走问题.首先将输入图像进行分块,根据像素块之间颜色特征和方向特征的相似性确定边的权重,从而构建图模型;然后通过全连通图搜索提取全局特性,突出全局较孤立的区域;同时通过k-regular图搜索提取局部特性,增强局部较均匀的区域;最后将全局特性和局部特性相结合得到显著图,进而确定感兴趣区域位置.实验结果表明,相比于其他两种具有代表性的算法,所提方法检测结果更加准确、合理,证明该算法切实可行. The existing saliency detection algorithm mainly focuses on the inter-pixel contrast and lacks global perspective for analyzing and understanding the object in complex surroundings.According to the thought that a salient object in an image is often conspicuous and compact,an unsupervised graph presentation random walk salient object extraction algorithm based on global isolation and local homogeneity is proposed,and the problem of salient region detection is formulated as Markov random walk.First of all,the graph model is formed by dividing the input image into block images and using color and orientation features to determine the weight of edge,and then the isolated regions are obtained by using the random walk on a complete graph to extract the global properties of the image.Meanwhile,the uniform regions are enhanced by using the random walk on a k-regular graph to extract the local properties of the image.Finally,the saliency map is obtained by combining the global properties and local properties of the image,and the salient object is located and extracted according to the saliency map.Experimental results show that the proposed algorithm is more reasonable and effective than the two representative methods for salient object detection.
出处 《自动化学报》 EI CSCD 北大核心 2011年第10期1279-1284,共6页 Acta Automatica Sinica
基金 国家自然科学基金(61071199) 河北省自然科学基金(F2010001297) 第二批中国博士后基金(200902356)资助~~
关键词 显著目标 孤立性 同质性 马尔科夫模型 图表示 Visual attention isolation homogeneity Markov chain model graph representation
  • 相关文献

参考文献15

  • 1Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
  • 2Walther D, Koch C. Modeling attention to salient proto-objects. Neural Networks, 2006, 19(9): 1395-1407.
  • 3Li Q, Wang S Z, Zhang X P. Hierarchical identification of visually salient image regions. In: Proceedings of the International Conference on Audio, Language and Image Processing. Shanghai, China: IEEE, 2008. 1708-1712.
  • 4张菁,沈兰荪,高静静.基于视觉注意模型和进化规划的感兴趣区检测方法[J].电子与信息学报,2009,31(7):1646-1652. 被引量:24
  • 5Hou X D, Zhang L Q. Saliency detection: a spectral residual approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8.
  • 6Guo C L, Ma Q, Zhang L M. Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform. In: Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.
  • 7Guo C L, Zhang L M. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Transactions on Image Processing, 2010, 19(1): 185-198.
  • 8许元男,赵远,刘丽萍,张宇,孙秀冬.基于伪Wigner-Ville分布和Rnyi熵的显著图目标检测[J].物理学报,2010,59(2):980-988. 被引量:6
  • 9Gopalakrishnan V, Hu Y Q, Rajan D. Salient region detection by modeling distributions of color and orientation. IEEE Transactions on Multimedia, 2009, 11(5): 892-905.
  • 10Zhang W, Wu Q M J, Wang G H, Yin H B. An adaptive computational model for salient object detection. IEEE Transactions on Multimedia, 2010, 12(4): 300-316.

二级参考文献13

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2姜斌,王宏强,黎湘,郭桂蓉.海杂波背景下的目标检测新方法[J].物理学报,2006,55(8):3985-3991. 被引量:22
  • 3Datta R, Joshi D, Li J, Wang J Z. Image retrieval: ideas, influences, and trends of the new age. ACM Computing Surveys, 2008, 40(2): 1-60.
  • 4Lew M S, Sebe N, Djeraba C, Jain R. Content-based multimedia information retrieval: state of the art and challenges. ACM Transactions on Multimedia Computing, Communications, and Applications, 2006, 2(1): 1-19.
  • 5Jeong S, Won C S, Gray R M. Image retrieval using color histograms generated by Gauss mixture vector quantization. Computer Vision and Image Understanding, 2004, 94(1-3): 44-66.
  • 6Saykol E, Gudukbay U, Ulusoy O. A histogram-based approach for object-based query-by-shape-and-color in image and video databases. Image and Vision Computing, 2005, 23(13): 1170-1180.
  • 7Li X L. Image retrieval based on perceptive weighted color blocks. Pattern Recognition Letters, 2003, 24(12): 1935-1941.
  • 8Yoon K J, Kweon I S. Color image segmentation considering human sensitivity for color pattern variations. In: Proceedings of the International Conference on Intelligent Robots and Computer Vision. San Diego, USA: SPIE, 2001. 269-278.
  • 9靳薇,张建奇,张翔.基于视觉注意力模型的红外目标检测[J].红外技术,2007,29(12):720-723. 被引量:11
  • 10张菁,沈兰荪,David Dagan Feng.基于视觉感知的图像检索的研究[J].电子学报,2008,36(3):494-499. 被引量:32

共引文献61

同被引文献205

  • 1毛尚勤,黄心汉,王敏.基于密度聚类的彩色图像分割方法[J].华中科技大学学报(自然科学版),2011,39(S2):116-119. 被引量:2
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3葛涛,冯松鹤.基于层次和动态阈值的图像显著区域检测方法[J].计算机应用,2006,26(11):2721-2723. 被引量:7
  • 4邹海荣,龚振邦,罗均.无人飞行器地面移动目标跟踪系统研究现状与展望[J].宇航学报,2006,27(B12):233-236. 被引量:5
  • 5MURPHY R R.人工智能机器人学导论[M].北京:电子工业出版社,2004..
  • 6Tsotsos J K. The complexity of perceptual search tasks [C]//Proceedings of the llth International Joint Conference on Artificial Intelligence: Vol. 2. Menlo Park, California, USA.. AAAI, 1989:1571- 1577.
  • 7Connolly C I. Determination of next best views [C]//IEEE International Conference on Robotics and Automation. Piscataway, N J, USA: IEEE, 1985:432 -435.
  • 8Alper A, Kristoffer S, Patric J. Object search ona mobile robot using relational spatial information [C]//Proceedings of the llth International Confer- ence on Intelligent Autonomous Systems. Amster- dam, Netherlands: IOS, 2010:111-120.
  • 9Shubina K, Tsotsos J K. Visual search for an object in a 3D environment using a mobile robot[J]. Corn puter Vision and Image Understanding, 2010, 114 (5) :535-547.
  • 10Pham H N. A comprehensive cooperative explora- tion framework for ground and air vehicles in un known environments[D]. Master thesis of School of Aerospace, Mechanical and Mechatronic Engineer- ing, The University of Sydney, 2007:116-149.

引证文献11

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部