期刊文献+

交通流灰色RBF网络非线性组合预测方法 被引量:8

Non-linear Combined Approach to Traffic Flow Prediction Based on Gray RBF Network
原文传递
导出
摘要 针对智能交通系统的开发,提出一种基于灰色GM(1,1)模型和RBF网络非线性组合的短时交通流预测方法.该方法采用三层结构的RBF网络将两种单一预测方法(灰色GM(1,1)模型和RBF网络)进行了非线性组合.利用实测数据对组合方法进行了仿真实验,结果表明:非线性组合模型的预测准确性高于单独的RBF网络预测的准确性;组合模型发挥了两种单一方法各自的优势,是短时交通流预测的有效方法. Aimed at developing Intelligent Transportation System, combined RBF network and GM(1,1) forecast, a new method of short-term traffic flow prediction is put forward. The hybrid forecasting approach combined the two methods making use of the non-linear RBF neural network which has a structure of three layers. The simulation test of the forecasting approaches was taken placed used field data. Results show that the non-linear hybrid model, which takes advantage of the unique strength of the two models in linear and nonlinear modeling, can produce more accurate predictions than that of single model. The hybrid model can be an efficient method to the short-term traffic flow prediction.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第19期1-7,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(61074140) 山东省自然科学基金(ZR2010FM007) 山东理工大学青年教师发展支持计划
关键词 交通流 短时预测 GM(1 1)模型 RBF神经网络 非线性组合预测 traffic flow short-term prediction GM(1,1) model RBF neural network non- linear hybrid prediction
  • 相关文献

参考文献8

二级参考文献40

  • 1张敬磊,王晓原.交通事件检测算法研究进展[J].武汉理工大学学报(交通科学与工程版),2005,29(2):215-218. 被引量:56
  • 2[1]Ben-Akiva M,Koutsopoulos H N,Mukundan A.A dynamic traffic model system for ATMS/ATIS operations[J].IVHS Journal,1994,2(1):1-19.
  • 3[2]Cheslow M,Hatcher S G,Patel V M.An initial evaluation of alternative intelligent vehicle highway systems architecture[R].MITRE Report 92w0000063,MITRE Corporation, 1992.
  • 4[3]Davis G A,Nihan N L.Nonparametric regression and short term freeway traffic forecasting[J].Journal of Transportation Engineering,1991,117(2):178-188.
  • 5[4]Box G E P,Jenkins G M.Time series analysis:forecasting and control[R].San Francisco:Holden-Day,1977.
  • 6[5]Kalman R E.A new approach to linear filtering and prediction problems[J].Journal of Basic Engineering,1960,82(1):35-45.
  • 7[6]Okutani I,Stephanedes Y J.Dynamic prediction of traffic volume through Kalman filtering theory[J].Transportation Research,Part B,1984,18(1):1-11.
  • 8[7]Altman N S.An introduction to kernel and nearest-neighbor nonparametric regression[J].The American Statistician,1992,46(3):175-185.
  • 9[8]Dougherty M S.A review of neural networks applied to transport[J].Transportation Research,Part C,1995,3(4):247-260.
  • 10[9]Zhang H J,Ritchie S G,Lo Z P.Macroscopic modeling of freeway traffic using an artificial neural network[J].Transportation Research Record,1997,1588:110-119.

共引文献349

同被引文献56

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部