期刊文献+

一种新的T-S模型混合辨识算法

A novel hybrid T-S model identification algorithm
下载PDF
导出
摘要 提出一种新型混合辨识算法HIA,以解决传统T-S模型辨识方法中所存在的不完全优化问题,如FCM与最小二乘法相结合的辨识方法就存在这样的问题.HIA通过将FCM、和声搜索算法以及最小二乘法相结合,并引入了误差反馈机制,以实现对所有参数的整体优化,并避免陷入局部极小点.论文将HIA应用到陀螺稳定平台的T-S模型辨识中,通过与传统辨识方法比较MSE值可以看出,HIA能够获得更高的辨识精度.这表明,对于实际的非线性系统,HIA能够有效解决传统辨识方法的不完全优化问题. To overcome the drawback of regular T-S model identification techniques,such as the FCM and least-squares method,a new Hybrid Identification Algorithm(HIA) is proposed in this paper.The HIA can simultaneously optimize all the model parameters and avoid being trapped into the local minima by merging the FCM,Harmony Search(HS) and the least-squares method together and using the error feedback mechanism.Our HIA is employed in the T-S modeling of the Gyro-stabilized platform.By comparing the MSE peformance,the HIA can indeed yield a superior MSE performance over the conventional identification methods.The identification results show that the HIA can effectively overcome the incomplete optimization problem of the conventional identification methods.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2011年第9期1-6,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(60874084) 芬兰科学院基金资助项目(135225)
关键词 T-S模型辨识 混合辨识算法 误差反馈机制 陀螺稳定平台 T-S model identification hybrid identification algorithm error feedback mechanism Gyro-stabilized platform
  • 相关文献

参考文献10

  • 1TAKAGI T, SUGENO M. Fuzzy identification of systems and its application to modeling and control [ J ]. IEEE Transaction on Systems, Man and Cybernetics, 1985, 15(1): 116-132.
  • 2SUGENO M, YASUKAWA T. A fuzzy-logic-based ap- proach to qualitative modeling [ J ]. IEEE Transaction oil Fuzzy Systems, 1993,1 ( 1 ) :7 - 31.
  • 3赵志刚,吕恬生,王庚.基于Takagi-Sugeno模糊模型的小型无人直升机系统辨识[J].上海交通大学学报,2008,42(5):856-860. 被引量:1
  • 4KANG S L, ZONG W G. A new structural optimization method based on the harmony search algorithm [J]. Computers & Structures,2004,82(9/10) : 781 -798.
  • 5LAZARO J, ARIAS J, MARTIN J L, et al. Implemen- tation of a modified Fuzzy C-Means clustering algorithm for real-time applications [ J ]. Microprocessors and Mi- crosystems ,2005,29 (8/9) : 375 - 380.
  • 6黄显林,宋清南,班晓军,等.一种基于和声搜索算法的T-S模型辨识方法[C]//第二十九届中国控制会议论文集.北京:中国自动化学会控制理论专业委员会,2010:1224-1229.
  • 7PARK M, JI S W, KIM E. A new approach to the iden- tification of a fuzzy model[ J ]. Fuzzy Sets and Systems, 1999, 104:169 - 181.
  • 8TAHERINEJAD N. Highly reliable harmony search al- gorithm [ C ]// European Conferenc, e on Circuit Theol;z and Design. Antalya: ECCTD, 2009:818 - 822.
  • 9HUNG Mingchuan, YANG Donlin. An efficient fuzzy C- means clustering algorithm [ C ]// IEEE International Conference on Data Mining. Piseataway: IEEE,2001: 225 - 232.
  • 10CHEN Musong, WANG Shinnwen. Fuzzy clustering analysis for optimizing fuzzy membership functions [ J ]. Fuzzy Sets and Systems, 1999,103:239 - 254.

二级参考文献5

  • 1Kim S K. Modeling, identification, and traiectory planning for a model-scale helicopter [D]. Michigan: The University of Michigan, 2001.
  • 2Mettler B. Modeling small-scale unmanned rotorcraft for advanced flight control design [D]. Pittsburgh: Carnegie Mellon University, 2001.
  • 3Kukolj D, Levi E. Identification of complex systems based on neural and Takagi-Sugeno fuzzy model [J]. IEEE Transactions on Syatems, Man, and Cybernetics. Part B: Cybernetics, 2004, 34(1):272-282.
  • 4Abonyi J, Babuska R, Szeifert F. Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models [J]. IEEE Transactions on Syatems, Man, and Cybernetics. Part B: Cybernetics, 2002, 32 (5): 612-621.
  • 5蔡金师.飞行器系统辨识学[M].北京:国防工业出版社,2003.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部