期刊文献+

蛋白质磷酸化位点的识别 被引量:17

RECOGNITION OF PROTEIN PHOSPHORYLATION SITE
下载PDF
导出
摘要 磷酸化是蛋白质重要的翻译后修饰之一,磷酸化位点的理论识别是计算生物学的重要研究内容。磷酸化位点附近存在保守残基片段,而这种保守性又与激酶类型相关。选择注释数据相对较多的CK2,PKA和PKC三种激酶催化的磷酸化位点作为研究对象,以序列组分特征,残基位置特异性特征和残基的非近邻关联特征为参数,采用延森-香农离散量(Jensen-Shannon Divergence,JSD)作为各特征差异度量,再使用二次判别分析算法组合不同特征,对磷酸化位点进行预测。对CK2,PKA和PKC三种激酶磷酸化位点7-fold交叉检验,总精度分别达到了90%,90%和86%,这一结果要好于当前其它预测模型。 Protein phosphorylation is one of the most important reversible post-translational modifications(PTMs),and the theoretical recognition of the phosphorylation site is an important task in computational biology researches.The conservative characteristic of residue fragments around the phosphorylation site has some relation with protein kinase.In this paper,CK2,PKA and PKC phosphorylation sites,which have relatively more enzyme annotation data,are chosen as the object of study,and the sequence component characteristic,the characteristic of residue position specificity,as well as the characteristic of residue pairnon-close neighbor relevancy,are taken as parameters.And,Jensen-Shannon Divergence with Quadratic Discriminant analysis(JSDQD)is used as the method for predicting the phosphorylation sites.The 7-fold cross-validation test accuracies of CK2,PKA and PKC are,respectively,90%,90% and 86%,which are higher than those obtained by other prediction models used currently.
出处 《内蒙古工业大学学报(自然科学版)》 2011年第2期108-115,共8页 Journal of Inner Mongolia University of Technology:Natural Science Edition
基金 内蒙古自然科学基金项目(2010BS0104)
关键词 蛋白质磷酸化位点 延森-香农离散量 二次判别分析 protein phosphorylation site Jensen-Shannon divergence quadratic discriminant analysis
  • 相关文献

参考文献5

二级参考文献105

  • 1吕军,罗辽复.人类polⅡ启动子的识别[J].生物化学与生物物理进展,2005,32(12):1185-1191. 被引量:26
  • 2赵凌志,刘颖,覃征.Weighted SVM在蛋白质磷酸化位点预测中的应用[J].计算机工程与应用,2006,42(3):155-157. 被引量:10
  • 3马翔,王明会,李骜,谢丹,冯焕清.基于加权模糊k近邻方法的蛋白质亚细胞位点预测[J].中国生物医学工程学报,2006,25(1):106-109. 被引量:5
  • 4Vapnik V.Statistical learning theory[M].New York:Wiley,1998.
  • 5Osuna E,Freund R,Girosi F.Support vector machines:Training and applications[Z].AI Memo 1602,Massachusetts Institute of Technology, 1997.
  • 6Wang M,Yang J,Liu G-P et al.Weighted-support vector machines for predicting membrance protein types based on pseudo-amino acid composition[J].Protein Engineering,Design & Selection,2004;17(6): 509-516.
  • 7Kim J-H,Lee J,Oh Bet al.Prediction of phosphorylation sites using SVMs[J].Bioinformatics, 2004; 20 ( 17 ) : 3179-3184.
  • 8HanJ.KamberM.范明 孟小峰译.数据挖掘-概念与技术[M].北京:机械工业出版社,2001..
  • 9Chang C-C,Lin C-J.LIBSVM:a library for support vector machines[EB/ OL].http ://www.csie.ntu.edu.tw/~cjlin/libsvm, 2005.
  • 10Zolnierowicz S, Bollen M. protein phosphorylation and protein phosphatases[J]. De Panne, Belgium, 1999, Sep, 12- 24.EMBO J, 2000,19:483 - 488.

共引文献32

同被引文献136

引证文献17

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部