期刊文献+

采用局部差分模型描述的彩色图像配准技术 被引量:4

Color Image Registration Algorithm Using Local Derivative Pattern Approach
下载PDF
导出
摘要 针对光照方向、强度、色彩或摄像头参数等因素的变化导致待配准彩色图像对间存在复杂的色彩变化,从而严重影响彩色图像配准效果的问题,提出了一种对彩色变化不敏感的彩色图像配准方法.该方法首先根据彩色图像间的von Kries彩色变换模型,建立图像的彩色不变量空间,在此空间利用尺度不变量特征转换(SIFT)算法完成特征点的检测;为加快运算速度,采用2阶局部差分模型(LDP)方法对特征点进行描述,并完成彩色图像特征间的初匹配;再进一步利用RANSAC算法消除误匹配特征点对,得到最终的匹配特征点对.实验结果表明,该彩色图像配准方法与其他算法相比,可以快速、准确地获得彩色图像间的映射关系,因此更加适合存在色彩变化的彩色图像的配准. Complex illumination change, caused by changes of direction, intensity and color of illumination, or camera parameters, exists between color image pair, and seriously impairs the effect of color image registration. A color image registration algorithm which is insensitive to the illumina tion change is proposed to solve the problem. The algorithm transforms the original RGB color image space to a color image invariant space by using the yon Kries color transform model. Then key-points are detected using the scale invariant feature transform (SIFT) algorithm in the color invariant space, and are described using the second-order local derivative pattern (LDP) method to accelerate matching speed and to complete elementary matching. The RANSAC algorithm is employed to discard mismatching feature pairs and to obtain the matching feature sets. Experimental results indicate that the proposed algorithm generates mapping relation more correctly and quickly than other color image registration methods. Hence, the proposed color image registration algorithm is suitable for color images in which there exists color illumination transform.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第10期30-37,共8页 Journal of Xi'an Jiaotong University
基金 黑龙江省自然科学基金资助项目(AF200921)
关键词 彩色图像配准 彩色不变量特征 尺度不变量特征转换算法 局部差分模型 color image registration color invariant feature scale invariant feature transform (SIFT) local derivative pattern (LDP)
  • 相关文献

参考文献19

  • 1LOWED G. Distinctive image features from scale-in- variant keypoints [J]. International Journal of Com- puter Vision, 2004, 60(2): 91-110.
  • 2张金萍,刘杰,李允公,倪洪启.一种基于PCA的工件图像匹配方法的研究[J].东北大学学报(自然科学版),2008,29(11):1621-1624. 被引量:2
  • 3刘萍萍,赵宏伟,耿庆田,刘志勇.仿射不变的快速局部特征描述子算法[J].吉林大学学报(工学版),2010,40(4):1059-1064. 被引量:3
  • 4KE Yan, SUKTNANKAR R. PCA-SIFT: a more dis- tinctive representation for local image descriptors[C] //Proceedings of the Computer Vision and Pattern Recognition Conference. Piscataway, NJ USA: IEEE Computer Society, 2004: 506-513.
  • 5BAY H, GRABNER H, BIHCHOF H. SURF: spee- ded robust features [C]//Proceedings of the European Conference on Computer Vision.Berlin, Germany: Springer-Verlag, 2006: 404-417.
  • 6MATAS J, CHUM O, URBAN M, et al. Robust wide baseline stereo from maximally stable extrernal regions [J]. Image and Vision Computing, 2004, 22 (10) : 761-767.
  • 7MIKOLAJCZYK K, SCHMID C. A comparison of affine region detectors [J]. International Journal of Computer Vision, 2005, 65(1): 43-72.
  • 8MOREELS P, PERONA P. Evaluation of features detectors and descriptors based on 3D objects [J].International Journal of Computer Vision, 2006, 73 (3): 263-284.
  • 9ABDEL-HAKIM A E, FARAG A A. CSIFT: a SIFT descriptor with color invariant characteristics [C]// Proceedings of the Computer Vision and Pattern Rec- ognition Conference. Piscataway, NJ, USA: IEEE Computer Society, 2006: 1978-1983.
  • 10LI Canlin, MA Lizhuang. A new frame work for fea- ture descriptor based on SIFT[J].Pattern Recogni- tion Letters, 2009, 30(5): 544-557.

二级参考文献54

  • 1孙宁,冀贞海,邹采荣,赵力.基于局部二元模式算子的人脸性别分类方法[J].华中科技大学学报(自然科学版),2007,35(S1):177-181. 被引量:20
  • 2Xiao Z T, Yang J R, Liu Q. Image matching system design and implementation [C ] // Proceedings of the Fourth International Conference on Cybernetics. New York: IEEE Machine Learning and 2005 : 18 - 21.
  • 3Nagashima S, Aoki T, Higuchi T, et al. A subpixel image matching technique using phase-only correlation [ C ] // ISPACS. Tottori: IEEE, 2006 : 701 - 704.
  • 4Olson C F. Maximum-likelihood image matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(6) :853 857.
  • 5Tan M H, Hammond J K. A non-parametric approach for linear system identification using principal component analysis [J]. Mechanical Systems and Signal Processing, 2007, 21 (4) : 1576 - 1600.
  • 6Sun W X, Chen J, Li J Q. Decision tree and PCA-based fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2007,21 (3) : 1300 - 1317.
  • 7Perry M A, Wynn H, P. Principal components analysis in sensitivity studies of dynamic systems [J ]. Probabilistic Engineering Mechanics, 2006,21(4) : 454 - 460.
  • 8Shanmugarn R, Johnson C. At a crossroad of data envelopment and principal component analyses[ J ]. Omaga, 2007,35(4) :351 - 364.
  • 9Luong Q-T, Faugeras O D. The fundamental matrix: Theory, algorithms and stability analysis[J]. International Journal of Computer Vision, 1996,1 ( 17 ): 43-76.
  • 10Longuet-Higgins H C. A computer algorithm for reconstructing a scene from two projections[J]. Nature, 1981,293 : 133-135.

共引文献121

同被引文献113

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部