期刊文献+

绝缘栅双极型晶体管失效机理与寿命预测模型分析 被引量:38

Failure Mechanism and Lifetime Prediction Modeling of IGBT Power Electronic Devices
下载PDF
导出
摘要 针对绝缘栅双极型晶体管(IGBT)的主要失效机理,特别是键合引线失效过程,采用高速红外热成像仪对键合引线失效过程的结温温度场分布实时探测试验,同时对IGBT模块电气与传热特性进行监控,发现IGBT在高结温与高温度梯度时主要的失效形式是键合引线翘曲与熔化,在外部特性上表现为集射极压降值增大,而热阻基本不变.提出了提高器件可靠性、延长使用寿命的方法.在加速寿命试验原理的基础上,通过开展高温下的功率循环测试,并对试验数据进行拟合,得到了加入电流等级和最高工作结温的改进寿命预测模型.通过试验数据误差分析对比,发现该模型精度较原有模型在不同测试条件下均有提高,适用范围从80 K拓宽到100K. Power electronic devices often fail due to over temperature, and the operational performance and longtime reliability are affected. Here the failure mechanism is analyzed in detail, especially for the failure process of the Al wires and wire-bonding, which is demonstrated by the detection of the fluctuation characteristic of the junction temperature field distribution by midwave infrared imaging camera. It is found that the main failures at high junction temperature and under high temperature gradient are lift-off and burn of the wire-bonding, while VCE gradually gets lower and the thermal resistance remains steady. Then the methodology to extend lifetime and improve operation reliability is presented, and the theory of the fast power cycling test is provided. An improved lifetime prediction model is obtained by fitting the test data, where the current rate and peak junction temperature are also considered. The temperature application range is widened from 80 K to 100 K.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第10期65-71,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金重点资助项目(50737004)
关键词 绝缘栅双极型晶体管 失效机理 寿命预测模型 键合引线 insulated gate bipolar transistor failure mechanism lifetime prediction model wirebonding
  • 相关文献

参考文献15

  • 1THEBAUD J M, WOIRGARD E, ZARDINI C, et al. Strategy for designing accelerated aging tests to evaluate IGBT power modules lifetime in real operation mode [J]. IEEE Transactions on Components and Packaging Technologies, 2003, 39(2):429-438.
  • 2CIAPPA M, CARBGNANI F, FICHTNER W. Lifetime prediction and design of reliability tests for high-power devices in automotive applications [J].IEEE Transactions on Materials Reliability, 2003, 3 (4):191-196.
  • 3MOROZUMI A, YAMADA K, MIYASAKA T, et al. Reliability of power cycling for IGBT power semi- conductor modules[J]. IEEE Transactions on Industry Applications, 2003, 39(3): 665-671.
  • 4LU H, BAILEY C. Lifetime prediction of an IGBT power electronics module under cyclic temperature loading conditions [C]//International Conference on Electronic Packaging Technology and High Density Packaging. Piscataway, NJ, USA:IEEE, 2009:274- 279.
  • 5HELD M, JACOB P, NICOLETTI G, et al. Fast power cycling test for IGBT modules in traction application[J].Journal of Electronics, 1999, 86(10) :1193- 1204.
  • 6XIONG Y, CHENG X, SHEN J, et al. Prognostic and warning system for power-electronics modules in electric, hybrid electric, and fuel-cell vehicles [J]. IEEE Transactions on Industrial Electronics, 2008, 55 (6) : 2268-2276.
  • 7HAMIDI A, BECK N, THOMAS E. Reliability and lifetime evaluation of different wire bonding technolo- gies for high power IGBT modules[J]. Microelectronics Reliability, 1999, 39(5): 1153-1158.
  • 8FELLER L, HARTMANN S, SCHNEIDER D. Life- time analysis of solder joints in high power IGBT mod- ules for increasing the reliability for operation at 150 degrees centigrade [ J ]. Microelectronics Reliability, 2008, 48(5): 1161-1166.
  • 9CIAPPA M. Selected failure mechanisms of modern power modules[J]. Microelectronics Reliability, 2002, 42(2) : 653-667.
  • 10陈明,胡安,唐勇,汪波.绝缘栅双极型晶体管传热模型建模分析[J].高电压技术,2011,37(2):453-459. 被引量:50

二级参考文献22

  • 1蓝元良,汤广福,印永华,周孝信,辛玉梅.大功率晶闸管热阻抗分析方法的研究[J].中国电机工程学报,2007,27(19):1-6. 被引量:41
  • 2Luo Z H. A thermal model for IGBT modules and its implementation in a real time simulator[D]. Pittsburgh, USA: University of Pittsburgh, 2002.
  • 3Bryant A T, Parker-Allotey N A, Palmer P R. The use of condition maps in the design and testing of power electronic circuits and devices[J]. IEEE Transactions on Industry Applications, 2007, 43(4): 902-910.
  • 4Fabis P M, Shun D, Windisehmann H. Thermal modeling of diamond-based power electronics package [C] // Fifteenth IEEE Semi-thermal Symposium. Northboro, USA: IEEE, 1999: 98- 104.
  • 5Masana F N. A new approach to dynamic thermal modelling of semiconductor packages [ J ]. Micro-electronics Reliability, 2001, 41(3): 901-912.
  • 6Drofenik U, Kolar J W. Teaching thermal design of power electronic systems with web-based interactive educational software [C]//IEEE Applied Power Electronics Conference and Exposition 2003. Miami, Florida, USA: IEEE, 2003: 1029-1036.
  • 7Shammas N Y A, Rodriguez M P, Plumpton A T, et al. Finite element modelling of thermal fatigue effects in IGBT modules [J]. IEE Proceedings--Circuits and Devices System, 2001, 148(2) : 95-100.
  • 8Reichl J, Berning D, Hefner A, et al. Six pack IGBT dynamic electro-thermal model: parameter extraction and validation[C] //IEEE Applied Power Electronics Conference and Exposition 2004. Anaheim, CA, USA: IEEE, 2004: 246-251.
  • 9Infineon. Thermal equivalent circuit models[M]. 1st ed. Warstein, Germany: Infineon, 2008.
  • 10Ammous A, Ghedira S, Allard B, et al. Choosing a thermal model for electrothermal simulation of power semiconductor devices[J]. IEEE Transactions on Power Electronic, 1999, 14 (2) : 300-307.

共引文献49

同被引文献321

引证文献38

二级引证文献263

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部