期刊文献+

SOME APPLICATIONS OF BP-THEOREM IN APPROXIMATION THEORY 被引量:1

SOME APPLICATIONS OF BP-THEOREM IN APPROXIMATION THEORY
下载PDF
导出
摘要 In this paper we apply Bishop-Phelps property to show that if X is a Banach space and G _ X is the maximal subspace so that G⊥ : {x* ∈ X* |x* (y) = 0; y ∈ G} is an L-summand in X*, then L1 (Ω, G) is contained in a maximal proximinal subspace of L1(Ω,X). In this paper we apply Bishop-Phelps property to show that if X is a Banach space and G _ X is the maximal subspace so that G⊥ : {x* ∈ X* |x* (y) = 0; y ∈ G} is an L-summand in X*, then L1 (Ω, G) is contained in a maximal proximinal subspace of L1(Ω,X).
出处 《Analysis in Theory and Applications》 2011年第3期220-223,共4页 分析理论与应用(英文刊)
关键词 Bishop-Phelps theorem support point proximinality L-projection Bishop-Phelps theorem, support point, proximinality, L-projection
  • 相关文献

参考文献6

  • 1Harmand, E, Wemer, D. and Wemer, W., M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math., 1574, Springer, Berlin, Heidelberg, New York, 1993.
  • 2Hiai, E and Umegaki, H., Integrals, Conditional Expection, and Martingales Multivalued Functions, J. Multi- variate Anal., 7(1977), 149-182.
  • 3Khalil, R. and Said, E, Best Approximation in L1(Ω,X), Proceeding of the Amer., Math., Soc., 1(1999),183- 189.
  • 4Mani, P., A Characterization of Convex Set, Handbook of Convex Geometry, 1993.
  • 5Phelps, R. R., The Bishop-Phelps Theorem in Complex Spaces: an Open Problem, Pure App., Math., 131(1991), 337-340.
  • 6Sadeqi, I., Support Functionals and Their Relation to the RNP, UMMS, 16(2004), 827-83.

同被引文献9

  • 1GB/T1766-2008,色漆和清漆涂层老化的评级方法[S].
  • 2Sufang Li, Mingyan Jiang. Complex-valued func- tion approximation using an improved BP learning algorithm for wavelet neural networks [ J ]. Journal of Computational Information Systems, 2014, 10 (18) :7985 -7992.
  • 3Sun G, Hoff S J, Zelle B C, eta|. Development and Comparison of BP and GRNN Models to Pre- dict Models to Predict Diurnal and Seasonal Gas and PM10 Concentrations and Emissions From Swine Building[ J ]. Transactions of the ASABE, 2008,52 (2) : 685 - 694.
  • 4Gill, Singh J, Singh B. Training back propagation neural networks with genetic algorithm for weather forecasting[ C ~// Intelligent Systems and Infor- matics (SISY) :2010 8th International Symposium on. Subotica : IEEE ,2010:465 - 469.
  • 5Moody, Darken C. Fast Learning in Networks of Locally-Tuned Processing Units [ J ]. Neural Com- putation, 1989,1 (2) :281 - 294.
  • 6Prasad Reddy P V G D, Sudha K R, Rama Sree P, et al. Software Effort Estimation using Radial Basis and Generalized Regression Neural Net- works [ J ]. JOURNAL OF COMPUTING, 2010,2 (5) :87 -92.
  • 7Donald F Specht. A General Regression Neural Network[ Jl. 1EEE Transactions on neural net- works, 1991,2 (6) : 568 - 576.
  • 8侯长林.车身外饰塑料件与车身涂层色差的改善和控制[J].现代涂料与涂装,2010,13(8):41-43. 被引量:6
  • 9师洪涛,杨静玲,丁茂生,王金梅.基于小波—BP神经网络的短期风电功率预测方法[J].电力系统自动化,2011,35(16):44-48. 被引量:142

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部