摘要
In this paper we apply Bishop-Phelps property to show that if X is a Banach space and G _ X is the maximal subspace so that G⊥ : {x* ∈ X* |x* (y) = 0; y ∈ G} is an L-summand in X*, then L1 (Ω, G) is contained in a maximal proximinal subspace of L1(Ω,X).
In this paper we apply Bishop-Phelps property to show that if X is a Banach space and G _ X is the maximal subspace so that G⊥ : {x* ∈ X* |x* (y) = 0; y ∈ G} is an L-summand in X*, then L1 (Ω, G) is contained in a maximal proximinal subspace of L1(Ω,X).