期刊文献+

基于DRNN网络的风力辅助提水机自整定PID控制

Adaptive PID Control Strategy for Wind Power Aided Pumping Water Machine Based on DRNN
下载PDF
导出
摘要 基于风力机和离心水泵的特点,提出了一种风力辅助提水机结构及该机的控制系统。该机是一个耦合的两输入两输出时变系统,系统存在的响应较慢,负荷的随机变化及参数快时变的特性。固定参数PID控制难以适应此系统控制要求,因此,提出一种基于回归神经网络(DRNN)的两输入两输出PID控制器结构,给出了DRNN神经网络参数学习算法和PID控制器参数自整定算法。使该系统能在自然界的风速随机变化的情况下使风力机最大可能利用风能,同时与离心水泵输出功率匹配.计算机仿真结果验证了该控制策略可行性,这为以后进一步研究奠定了基础。 Based on the characteristics of wind turbines and water pumps,a scheme for wind power aided pumping water machines and its control system are proposed.The system is a coupling two-input and two-output and time_variable system.The system has the problem of a slow response and the property of fast parameter variance with the stochastic load.Conventional PID controller which is tuned at typical operating point can hardly work well at different loads,so a two-input and two-output PID controller structure based on diagonal recurrent neural network(DRNN) is proposed.Besides,the learning algorithms of the parameters of DRNN and PID controller are proposed.The control strategy can make the wind turbine work at its best,and match output power of water pump simultaneously.Finally,the validity of the proposed control strategy is revealed via computer simulations and it has laid an excellent foundation for a further research.
作者 杜福银
出处 《中国农村水利水电》 北大核心 2011年第10期93-95,105,共4页 China Rural Water and Hydropower
基金 四川省科技支撑计划(2011GZ0102)
关键词 风力辅助提水机 耦合 PID控制 回归神经网络(DRNN) wind power aided pumping water machine coupling PID control d iagonal recurrent neural network(DRNN)
  • 相关文献

参考文献7

二级参考文献38

  • 1刘久斌,李德桃.利用改进型DRNN神经网络控制锅炉的负压和风量[J].动力工程,2005,25(6):840-843. 被引量:3
  • 2Bueno C, Carta J A. Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the canary islands [ J ]. Renewable and Sustainable Energy Reviews, 2006, 10(4) :312-340.
  • 3Valdes L C, Ramamonjisoa B. Optimised design and dimensioning of low-technology wind pumps [ J ]. Renewable Energy, 2006, 31(9):1391-1429.
  • 4Koklas P A, Papathanassiou S A. Component sizing for an autonomous wind-driven desalination plant [J].Renewable Energy, 2006, 31(13) :2122-2139.
  • 5Kilkis B. Utilization of wind energy in space heating and cooling with hybrid HVAC systems and heat pumps [J]. Energy and Buildings, 1999, 30(2) : 147-153.
  • 6Carrilho da Graca, Chen Q, Ghcksman L R, et al. Simulation of wind-driven ventilative cooling systems for an apartment building in Beijing and Shanghai[J]. Energy and Buildings, 2002,34(1) :1-11.
  • 7Sateikis I, Lynikiene S, Kavolelis B. Analysis of feasibility on heating single family houses in rural areas by using sun and wind energy[J]. Energy and Buildings, 2006,38(6): 695-700.
  • 8Ku C L,Lee K Y.Diagonal recurrent neural networks dynamics systems control[J].IEEE Transactions on Neural Networks,1995,6(1): 144-156.
  • 9Chai T.Decoupling design of muhivariable generalized predictive control[J].IEEE Proe Control Theory and Application, 1994,141(3): 89-94.
  • 10Wang Qing-guo.Decoupling internal model control for muhivariable systems with multiple time delays[J].Chemieal Engineering Science, 2002,57.

共引文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部