期刊文献+

基于移不变全方向角提升的遥感图像降噪 被引量:3

Translation Invariant Omnidirectional Lifting Based Remote Sensing Image Denoising
下载PDF
导出
摘要 在分析遥感图像结构特征及其与噪声之间主要区别的基础上,利用图像信号的方向信息,提出基于移不变全方向角提升小波(TI-OL)抑制遥感图像噪声的方法。该方法在方向提升小波变换的基础上并利用循环平移,Gabor小波滤波器和图像旋转技术改进了方向提升小波在图像去噪过程中存在的三个弊端:缺乏移不变性质,图像局部方向信息判方法断缺乏噪声鲁棒性和变换方向分布有限。消除去噪结果中的吉布斯效应,提高图像方向信息判断的准确性并保证图像纹理方向始终落在方向提升能最优表示的方向区间内。试验结果证明所提方法在处理遥感图像的过程中能在去噪的同时保留图像的细节和边缘信息,对遥感图像中的边缘信息如道路和桥梁有较好的刻画性能,较传统方法去噪性能(PSNR)和主观视觉效果(SSIM)均有较大提高。 After analyzing remote sensing image structure and its main difference from noise signals, this paper utilizes directional information in image signal and proposes a translation invariant omnidirectional lifting (TI-OL) for remote sensing image noise removal. By integrating cycle spinning, Gabor wavelet filter and image rotate skills into traditional adaptive directional lifting (ADL), the proposed algorithm overcomes three drawbacks in ADL as lack of translation invariance, inefficiency in local direction estimation and limitation on transform direction distribution. In this way, the proposed method can reduce Gibbs effects in thedenoising result, promote the accuracy of orientation estimation and guarantee an optimal representation for textural information. Experimental results demonstrate that the proposed method can effectively remove noise while protecting the image detail information. It outperforms state-of-art denoising algorithms in terms of both objective (PSNR) and subjective (SSIM) evaluation.
出处 《测绘学报》 EI CSCD 北大核心 2011年第5期555-562,共8页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(60776795 60736043 60902031 60805012 60902079 61070138 61072104) 高等学校博士学科点专项科研基金(200807010004 20070701023) 中央高校基本科研业务费专项资金(JY10000902028)
关键词 遥感图像去噪 方向提升小波 移不变性质 2-D Gabor小波滤波器 remote sensing image denoising adaptive directional lifting translation invariance 2-D Gabor wavelet filter
  • 相关文献

参考文献15

  • 1王志武,丁国清,颜国正,林良明.自适应提升小波变换与图象去噪[J].红外与毫米波学报,2002,21(6):447-450. 被引量:12
  • 2王相海,张洪为,李放.遥感图像高斯与椒盐噪声的PDE混合去噪模型研究[J].测绘学报,2010,39(3):283-288. 被引量:26
  • 3宋迎春,刘庆元,曾联斌,陈宇波.测量噪声污染时的一种动态滤波算法[J].测绘学报,2009,38(2):138-143. 被引量:4
  • 4DING Wenpeng, WU Feng. Adaptive Directional Lifting Based Wavelet Transform for Image Coding EJ-. IEEE Transaction on Image Processing, 2007, 16(2): 416-684.
  • 5LIU Yu, KING N N. Weighted Adaptive Lifting based Wavelet Transform [J].IEEE Transaction on Image Processing, 2008, 17(4): 500 -511.
  • 6DONG Weisheng, SHI Guangming, XU Jizheng. Signal- adapted Directional I.ifting Scheme for Image Compression [C] // Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS ' 08). Seattle:[ s. n. ],2008:1392-1395.
  • 7WANG Xiaotian, SHI Guangming, NIU Yi, et al.Robust Adaptive Directional Lifting Wavelet Transform for Image Denoising[J].IET Image Process, 2011,5(3) :249-260.
  • 8WANG Xiaotian, SHI Guangming, LIANG Lili. Image Denoising Based on Translation Invariant Directional Lifting[C]//Proceedings of IEEE International Conference on ICASSP. Dallas:[s. n. ], 2010:1446 -1449.
  • 9COIFMAN R R, DONOHO D L. Translation Invariant Denoising, Wavelets and Statisties[J]. Springer Lecture Notes in Statistics 1994, 103:125- 150.
  • 10BOVIK A C , CLARK M, GEISLER W S. Multichannel Texture Analysis Using Localized Spatial Filters[J].IEEE Transaction on Pattern Analysis and Machine Intelligence, 1990 12(1): 55-73.

二级参考文献32

共引文献159

同被引文献20

引证文献3

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部