期刊文献+

重组大肠杆菌表达氧化还原酶不对称还原2-羟基苯乙酮的研究 被引量:3

Asymmetric reduction of 2-hydroxyacetophenone by recombinant oxidoreductases expressed in Escherichia coli
下载PDF
导出
摘要 将来源于7种微生物的13个氧化还原酶基因分别与表达载体pET21c连接后,转化入Escherichia coli BL21(DE3)中,得到13株重组菌。重组菌在IPTG诱导下进行表达,并对2-羟基苯乙酮进行不对称催化还原。研究发现,在17℃下诱导表达的重组酶比活明显高于30℃和37℃下诱导表达的比活。另外,来源于Candida parapsilosis CCTCCM203011羰基还原酶SCR1能够较好地不对称催化还原2-羟基苯乙酮,在5 g/L底物浓度下,2-羟基苯乙酮被还原得到(S)-PED,光学纯度大于99%,产率达到90.3%。通过对有机溶剂的筛选,构建了水/十二酸乙酯两相反应体系,可以还原底物浓度达8 g/L的2-羟基苯乙酮,光学纯度大于99%,产率为86.9%。 13 recombinant Escherichia coli BL21 (DE3) overexpressing 13 different oxidoreductases were constructed respectively. 2-hydroxyacetophenone was applied as substrate to investigate the biocatalytic asymmetric reduction by the recombinants. The results indicated that relative enzyme activity of the expressed enzyme was much higher at the induc- tion temperature of 17℃ than that at 30℃ and 37℃. Besides, SCR1, which was from Candida parapsilosis CCTC- CM203011 showed best performance. The effects of substrate concentration on asymmetric conversion of 2-hydroxyacetophenone were investigated. It could asymmetrically reduce a-hydroxyacetophenone to produce (S)-PED with 99.9 % ee and 90.3 % yield with substrate concentration of 5 g/L. By introducing ethyl laurate as organic phase to form biphasic system, 8 g/L 2-hydroxyacetophenone was reduce to (S)-PED with 99.9% ee and 86.9% yield.
出处 《工业微生物》 CAS CSCD 2011年第5期1-5,共5页 Industrial Microbiology
基金 国家自然科学基金(20776060 30800017) 863国家高技术研究发展计划(2006AA020104 2007AA02Z226) 973国家重点基础研究发展规划(2009CB724706) 高等学校学科创新引智计划(111计划 111-2-06) 江苏省自然科学基金(BK2008528)
关键词 不对称催化还原 氧化还原酶 2-羟基苯乙酮 SCR1 asymmetric reduction oxidoreductase a-hydroxyacetophenone SCR1
  • 相关文献

参考文献14

  • 1Schmid A, Dordick JS, Hauer B, et al. Industrial biocatalysis today and tomorrow. Nature, 2001, 409(6817):258-268.
  • 2Schoemaker HE, Mink D, Wubbolts MG. Dispelling the myths - Biocatalysis in industrial synthesis. Science, 2003, 299(5613): 1694 - 1697.
  • 3Patel RN. Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coordination Chemistry Reviews, 2008, 252 (5 - 7) : 659 - 701.
  • 4Luetz S, Giver L, Lalonde J. Engineered Enzymes for Chemical Production. Bioteehnology and Bioengineering, 2008, 101 (4) : 647 - 653.
  • 5Costello CA, Payson RA, Menke MA, et al. Purification, characterization, eDNA cloning and expression of a novel ketoreductase from Zygosaccharornyces rouxii. Europcan Journal of Biochemistry, 2000, 267 (17) : 5493 - 5501.
  • 6Kataoka M, Hoshino-Hasegawa A, Thiwthong R, et al. Gene cloning of an NADPH-dependent menadione reductase from Candida macedoniensis, and its application to chiral alcohol production. Enzyme and Microbial Technology, 2006, 38 (7) : 944 - 951.
  • 7Kataoka M, Kotaka A, Thiwthong R, et al. Cloning and overexpression of the old yellow enzyme gene of Candida macedoniensis, and its application to the production of a ehiral compound. Journal of Bioteehnology, 2004, 114( 1 - 2) : 1 - 9.
  • 8Yamamoto H, Mitsuhashi K, Kimoto N, et al. A novel NADH- dependent carbonyl reductase from Kluyoeromyes aestuarii and comparison of NADH-regenerafion system for the synthesis of ethyl (S)-4-chloro-3-hydroxybutaneate. Bioscienee Biotechnology and Biochemistry, 2004, 68(3) :638- 649.
  • 9Yasohara Y, Kizaki N, Hasegawa J, et al. Molecular cloning and overexpression of the gene encoding an NADPH-dependent carbonyl reductase from Candida magnoliae, involved in stereos elective reduction of ethyl 4 - chloro-3-oxobutanoate. Bioscience Biotechnology and Biochemistry, 2000, 64(7) : 1430-1436.
  • 10Weckbecker A, Hummel W. Cloning, expression, and characterization of an (R)-specific alcohol dehydrogenase from Lactobacillus kefir. Biocatalysis and Biotransformation, 2006, 24(5) : 380 - 389.

二级参考文献15

  • 1Lee K, Gibson D T. Stereospecific dihydroxylation of the styrene vinyl group by purified naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4 [J]. J. Bacteriol., 1996, 178:3353 - 3356.
  • 2Liese A, Karutz M, Kamphuis J, et al. Resolution of 1-phenyl-1, 2-ethanediol by enantioselective oxidation overcoming product inhibition by continuous extraction [J]. Biotechnol. Bioeng., 1996,51: 544- 550.
  • 3Panke S, Held M, Wubbolts M. Trends and innovations in industrial biocatalysis for the production of fine chemicals [J]. Curr. Opin.Biotechnol., 2004, 15:272 - 279.
  • 4Schmid A, Dordick J S, Hauer B, et al. Industrial biocatalysis today and tomorrow [J]. Nature, 2001, 409:258 - 268.
  • 5Schoemaker H E, Mink D, Wubbolts M G. Dispelling the myths-biocatalysis in industrial synthesis [J]. Science, 2003, 299:1694 - 1697.
  • 6Prelog V. Specification of the stereospecificity of some oxidoreductases by diamond lattice sections [J]. Pure Appl. Chem., 1964,9: 119- 130.
  • 7Kataoka M, Kotaka A, Thiwthong R, et al. Cloning and overexpression of the old yellow enzyme gene of Candida macedoniensis, and its application to the production of a chiral compound [J]. J. Biotechnol.,2004, 114: 1-9.
  • 8KitaK, FukuraT, NakaseK, et al. Cloning, overexpression, and mutagenesis of the Sporobolomyces salmonicolor AKU4429 gene encoding a new aldehyde reductase, which catalyzes the stereoselective reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro 3-hydroxybutanoate [J]. Appl. Environ. Microbiol., 1999, 65:5207 - 5211.
  • 9Yasohara Y, Kizaki N, Hasegawa J, et al. Molecular cloning and overexpression of the gene encoding an NADPH-dependent carbonyl reductase from Candida magnoliae, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate [J]. Biosci. Biotechnol.Biochem., 2000, 64: 1430-1436.
  • 10Weckbecker A, Hummel W. Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP^+-dependent alcohol dehydrogenase and NAD^+-dependent formate dehydrogenase [J]. Biotechnol. Lett., 2004,26:1739 - 1744.

共引文献15

同被引文献27

  • 1崔建奇,柳川,周廷冲,王会信.成纤维细胞生长因子与心血管疾病[J].生理科学进展,1994,25(1):76-79. 被引量:18
  • 2金曼林,童坦君.成纤维细胞生长因子研究进展[J].生理科学进展,1994,25(2):157-160. 被引量:23
  • 3曲荟锦,王凤寰,田平芳,谭天伟.克雷伯肺炎杆菌1,3-丙二醇氧化还原酶基因克隆及表达条件研究[J].工业微生物,2007,37(1):25-29. 被引量:3
  • 4Sporn MB, Robert AB. Peptide growth factors are muhifunction- al. Nature, 1988, 332: 217-219.
  • 5Bikfalvi A, Klein S, Dintucci G, et al. Biological roles of fibro- blast growth factor-2. Endocrine Rev, 1997, 18( I ) :26-45.
  • 6Nibu K, Li G, Kaga K, et al. bFGF induces differentiation and death of olfactory neuroblastoma cells. Biochemical and Biophysi- cal Research Communications, 2000, 279( 1 ) : 172-180.
  • 7Presta M, Dell'Era P, Mitola S, et al. Fibroblast growth factor/ fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev, 2005, 16(2) : 159-178.
  • 8Spence JR, Aycinena J and Rio-Tsonis KD. Fibroblast growth factor-hedgehog interdependent during retina regeneration. Devel- opmental Dynamics, 2007, 236 (5) : 1161-1174.
  • 9Ranierri Cancedda MD, Bianchi G, Derubeis A, et al. Cell Therapy for Bone Disease: A Review of Current Status. Stem Cells, 2003, 21(5): 610-619.
  • 10Dailey L, Ambrosetti D, Mansukhani A, et al. Mechanisms un- derlying differential responses to FGF signaling. Cytokine Growth Factor Rev, 2005, 16(2) : 233-247.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部