期刊文献+

基于CSMDEM算法的GMM学习方法 被引量:1

GMM Learning Method Based on CSMDEM Algorithm
下载PDF
导出
摘要 基于Mahalanobis距离的EM(MDEM)算法存在过分裂问题。为此,提出一种竞争结束MDEM(CSMDEM)算法。该算法将最小描述长度准则作为竞争结束条件嵌入到MDEM算法中,能够在估计混合模型参数的同时选择模型阶数。实验结果表明,该算法具有较低的平均EM迭代次数,能够较好地拟合高斯混合模型。当其被应用到跳频网台分选时,能够以较高的正确率分选跳频信号。 To solve the over-splitting problem suffered in Mahalanobis distance based EM(MDEM) algorithm,a Competitive Stop MDEM(CSMDEM) algorithm is proposed.By regarding Minimum Description Length(MDL) criteria as a competitive stop condition and embedding it into MDEM algorithm,the CSMDEM algorithm can select model order while estimating the parameters of GMM.Experimental results show that the proposed CSEM algorithm has an increased capability to fit GMM while maintaining a low average number of EM iterations.By applying it to signal sorting,the proposed EM algorithm can sort FH signals with high correctness.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第19期153-156,共4页 Computer Engineering
关键词 高斯混合模型 MAHALANOBIS距离 EM算法 最小描述长度准则 Gaussian Mixture Model(GMM) Mahalanobis distance Expectation Maximization(EM) algorithm Minimum Description Length(MDL) criteria
  • 相关文献

参考文献5

二级参考文献14

  • 1董梅,杨曾,张健,王能.基于信号强度的无线局域网定位技术[J].计算机应用,2004,24(12):49-52. 被引量:36
  • 2余涛,黄书宝,葛昭攀,陈宇亮,施安.无线局域网环境下的位置服务研究[J].计算机工程,2005,31(14):122-124. 被引量:3
  • 3Bahl P, Padmanabhau V N. RADAR: An In-building RF-based User Location and Tracking System[C]//Proc. of 2000 Annual Joint Conference of the IEEE Computer and Communications Societies. [S. l.]: IEEE Computer Society, 2000.
  • 4Roos T, Myllymaki E Tirri H, et al. A Probabilistic Approach to WLAN User Location Estimation[J]. International Journal of Wireless Information Networks, 2002, 9(3): 155-164.
  • 5Moustafa A. Multivariate Analysis for WLAN Location Determination Systems[C]//Proc. of the 2nd Annual Int'l Conf. on Mobile and Ubiquitous Systems: Networking and Services. San Diego, California, USA: ACM Press, 2005.
  • 6Dempster A P, Laird N M, Rubin D B. Maximum Likelihood from Incomplete Data via the EM Algorithm[J]. Journal of the Royal Statistical Society, 1977, 39(2): 1-38.
  • 7Vardi V.Network Tomography:Estimating Source-destination Traffic Intensities from Link Date[Z].American Statistical Association,1996:365-377.
  • 8Cao J,Davis D,Vander Weil S,et al.Time-varying Network Tomography[Z].American Statistical Association,2000:1063-1075.
  • 9Liang Gang,Yu Bin.Maximum Pseudo Likelihood Estimation in Network Tomography[J].IEEE Trans.on Signal Processing,2003,51(8):2043-2053.
  • 10Zhang Yin,Roughan M.Fast Accurate Computation of Large-scale IP Matrices from Link Loads[C]//Proc.of ACM Metrics International Conference on MMCS.New York,USA:ACM Press,2004:10-14.

共引文献14

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部