期刊文献+

粒子群算法在结构非概率可靠性优化中的应用 被引量:4

Application of Particle Swarm Optimization to Structural Non-probabilistic Reliability Optimization
下载PDF
导出
摘要 为了解决实际工程中不确定性结构的可靠性优化问题,建立了以结构非概率可靠性指标和横截面积为约束条件、最小化结构质量为目标的优化模型.利用非概率集合理论中的凸模型方法,求出可靠性指标,提出了基于粒子群算法的结构非概率可靠性优化方法.算例分析结果表明:与参数取平均值时的结构确定性优化方法相比,容许非概率可靠性指标为零时的结构非确定性优化方法得到的结构质量误差仅为0.009%.随着容许非概率可靠性指标的增大,桁架结构横截面积及质量也相应增大;当容许非概率可靠性指标为1.5时,与梯度投影法优化结果相比,利用该方法优化后的结构质量减少了0.323%. In order to solve the reliability optimization problem of uncertainty structures in actual engineering,an optimization model was established to minimize the structure mass with the constraints of its non-probabilistic reliability index and cross-sectional area.The non-probabilistic reliability index was derived using the convex model method for the probability set theory,and a method for structural non-probabilistic reliability optimization was proposed based on particle swarm optimization(PSO).The results of an application example show that the structure mass relative error between the uncertainty optimization method and the deterministic optimization method is barely 0.009%,when deterministic optimization parameters take average value and the expected non-probabilistic reliability index is zero.The cross-sectional area and mass of the truss structure increase with an increase in the expected non-probabilistic reliability index.When the expected non-probabilistic reliability index is 1.5,the structure mass obtained by the proposed optimization method is decreased by 0.323% compared with that by the gradient projection method.
出处 《西南交通大学学报》 EI CSCD 北大核心 2011年第5期847-852,共6页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(51175442) 中央高校基本科研业务费专项资金资助项目(2010ZT03)
关键词 粒子群算法 凸模型 非概率可靠性优化 可靠性指标 particle swarm optimization convex model non-probabilistic reliability optimization reliability index
  • 相关文献

参考文献18

  • 1ELISHAKOFF I. Essay on uncertainties in elastic and viscoelastic structures : from A. M. Freudenthal's criticisms to modern convex modeling [ J ]. Computers and Structures, 1995, 56 (6) : 871-895.
  • 2IBRAHIM R A. Structural dynamics with parameter uncertainties [ J ]. Applied Mechanics Reviews, 1987, 40(3) : 309-328.
  • 3曹鸿钧,段宝岩.基于凸集合模型的非概率可靠性研究[J].计算力学学报,2005,22(5):546-549. 被引量:67
  • 4ELISHAKOFF I, CAI G Q. Non-linear buckling of a column with initial imperfection via stochastic and non- stochastic convex models [ J ]. International Journal of Non-linear Mechanics, 1994, 29( 1 ) : 71-82.
  • 5ELISHAKOFF I, ELISSEEFF P, GLEGG S A L. Non- probabilistic, convex-theoretic modeling of scatter in material properties [ J ]. AIAA Journal, 1994, 32 ( 4 ) : 843 -849.
  • 6BEN-HAIM Y. A non-probabilistic concept of reliability [J]. Structural Safety, 1994, 14(4) : 227-245.
  • 7BEN-HAIM Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models[ J ]. Structural Safety, 1995, 17 (2) : 91-109.
  • 8乔心州,仇原鹰,孔宪光.一种基于椭球凸集的结构非概率可靠性模型[J].工程力学,2009,26(11):203-208. 被引量:25
  • 9亢战,罗阳军.基于凸模型的结构非概率可靠性优化[J].力学学报,2006,38(6):807-815. 被引量:41
  • 10PATEL V K, PAO R V. Design optimization of shell- and-tube heat exchanger using particle swarm optimization technique [ J]. Applied Thermal Engineering, 2010, 30( 11 ) : 1417-1425.

二级参考文献72

共引文献140

同被引文献28

  • 1曹鸿钧,段宝岩.基于非概率可靠性的结构优化设计研究[J].应用力学学报,2005,22(3):381-385. 被引量:23
  • 2龚纯,王正林.精通MATLAB最优化计算[M].北京:电子工业出版社,2012.
  • 3Ben-Haim Y.A non-probabilistic concept of reliability[J].Structural Safety,1994,14(4):227-245
  • 4Ellishakoff I.Discussion on a non-probabilistic concept of reliability[J].Structural Safety,1995,17(3):195-199
  • 5Elishakoff I.Essay on uncertainties in elastic and viscoelastic structures:from A.M.Freudenthars criticisms to modem convex modeling[J].Computers and Structures,1995,56(6):871-895.
  • 6Ben-Haim Y.A non-probabilistic concept of reliability[J]. Structural Safety,1994,14(4):227-245.
  • 7Ben-Haim Y.A non-probabilistic measure of reliability of linear systems based on expansion of convex models[J].Structural Safety,1995,17(2):91-109.
  • 8Elishakoff I.Discussion on a non-probabilistic concept of reliability[J].Structural Safety,1995,17(3):195-199.
  • 9Ganzerli S,Pantelides C P.Optimum structural design via convex model superposition[J].Computer Methods in Applied Mechanics and Engineering,2000,74(6):639-647.
  • 10Clerc M,Kennedy J.The particle swann-explosion,stability,and convergence in a multidimensional complex space[J].IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部