期刊文献+

K2_SPH方法及其对二维非线性水波的模拟 被引量:6

K2_SPH Method and Application for 2D Nonlinear Water Wave Simulation
下载PDF
导出
摘要 K2_SPH方法通过泰勒级数展开和联立求解积分方程组的办法得到具有二阶精度的核近似方法.随着核近似精度的提高,K2_SPH需要对一些关键数值技术进行改进才能成功模拟非线性水波问题,例如自由表面边界和固壁边界.通过与传统SPH方法计算结果比较,K2_SPH方法在非线性自由表面计算精度和整个粒子系统中有关变量分布都有显著提高. Smoothed particle hydrodynamics is a Lagrangian meshless partilcle method. It gets superiority in simulation of free surface flow and large deformation problems. But low accuracy of kernel approximation becomes an obstacle for widely applications as particles are distributed disorderly or near a boundary. Adopting Taylor expansion and solving integral equation matrix, a second order kernel approximation method, namely K2_SPH is obtained and discussed. With improvement of kernel approximation, improved numerical techniques are adopted, such as free surface boundary and solid boundary. They are very important for K2_SPH method. With comparison of standard SPH for nonlinear water wave simulation, K2_SPH improves obviously in free surface simulation and distribution of some variables in total particle system.
作者 郑兴 段文洋
出处 《计算物理》 EI CSCD 北大核心 2011年第5期659-666,共8页 Chinese Journal of Computational Physics
基金 国家自然科学基金(51009034) 111计划(B07019)资助项目
关键词 光滑粒子流体动力学 K2_SPH 无网格方法 非线性水波 smoothed particle hydrodynamics K2_SPH meshless method nonlinear water wave
  • 相关文献

参考文献11

二级参考文献134

共引文献110

同被引文献30

  • 1崔岩,吴卫,龚凯,刘桦.二维矩形水槽晃荡过程的SPH方法模拟[J].水动力学研究与进展(A辑),2008,23(6):618-624. 被引量:21
  • 2胡晓燕,林忠,倪国喜.基于黎曼解的移动最小二乘粒子动力学数值方法[J].计算物理,2007,24(2):159-165. 被引量:2
  • 3傅学金,强洪夫,杨月诚.固体介质中SPH方法的拉伸不稳定性问题研究进展[J].力学进展,2007,37(3):375-388. 被引量:16
  • 4Monaghan J J, Kos A. Solitary waves on a Cretan beach[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1999, 125(3): 145-155.
  • 5Edmond Y M, Lo, et al. Simulation of near-shore solitary wave mechanics by an incompressible SPH method[J]. Applied Ocean Research, 2002, 24: 275-286.
  • 6Manenti S, Panizzo A, et al. SPH simulation of a floating body forced by regular waves[C]//SPHERIC Workshop. Switzer- land, 2008: 38-41.
  • 7Vaughan G L. Simulating breaking waves using smoothed particle hydrodynamics[D]. Hamilton: University of Waikato, 2005.
  • 8Antuono M, Golagrossi A, et al. Propagation of gravity waves through an SPH scheme with numerical diffusive terms[J]. Computer Physics Communications, 2011, 182: 866-877.
  • 9Vila J P. On particle weighted methods and smooth particle hydrodynamics[J]. Mathematical Models and Methods in Ap- plied Sciences, 1999, 9(2): 161-209.
  • 10Toro. Shock-Capturing methods for free-Surface shallow flows[M]. John Wiley&Sons, 2001.

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部