期刊文献+

基于空间信息的可能性模糊C均值聚类遥感图像分割 被引量:12

Remote sensing image segmentation using possibilistic fuzzy c-means clustering algorithm based on spatial-information
下载PDF
导出
摘要 可能性模糊C均值(PFCM)聚类算法作为模糊C均值(FCM)聚类算法的一种改进算法,能在一定程度上克服FCM算法对噪声的敏感性;但由于PFCM没有考虑像元间的空间信息,对含有较大噪声的图像分割效果依然不理想。为此,提出一种新的基于空间信息的PFCM算法(SPFCM),克服了PFCM算法对含有较大噪声的图像分割效果不佳的缺点。通过对人工图像和IKONOS遥感图像进行分析,结果表明,SPFCM算法无论是在视觉上还是在分割正确率上都优于传统的FCM算法、PFCM算法及两种加入空间信息的FCM算法;对于含有高斯噪声和盐椒噪声的图像,平均分割正确率高达99.71%,是一种去噪效果较好的图像分割算法。 Fuzzy C-Means(FCM) clustering algorithm is very sensitive to image noise when it is used to image segmentation.As an improvement of FCM,Possibility FCM(PFCM) clustering algorithm can reduce the influence of image noise on image segmentation to some extent.However,since no spatial information of the image is taken into consideration,PFCM can not perform well when the image contains much noise.In order to further improve the segmentation accuracy of PFCM when much noise is present in the image,a new Spatial PFCM(SPFCM) algorithm was proposed by incorporating the spatial information of each pixel into the traditional PFCM algorithm in this paper.Both synthetic and IKONOS images with different kinds of noise were applied,and the segmentation results show that the proposed SPFCM clustering prevails over the FCM,PFCM,FCM-S1 and FCM-S2 visually and quantitatively. When dealing with different image noise,its average segmentation rate is as high as 99.71%,which shows the effectiveness of the proposed algorithm.
出处 《计算机应用》 CSCD 北大核心 2011年第11期3004-3007,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(40801186) 武汉市青年晨光计划项目(200950431218)
关键词 空间信息 模糊C均值聚类 可能性C均值聚类 图像分割 spatial information Fuzzy C-Means(FCM) clustering Possibilistic C-Means(PCM) clustering image segmentation
  • 相关文献

参考文献12

  • 1许新征,丁世飞,史忠植,贾伟宽.图像分割的新理论和新方法[J].电子学报,2010,38(B02):76-82. 被引量:146
  • 2BEZDEK J C. Pattern recognition with filzzy objective function algo- rithms [ M] . New York: Plenum Press, 1981.
  • 3王适,蒋璐璐,王宝成,沈润平,李鑫慧.改进的模糊C均值聚类遥感图像分割方法[J].计算机应用,2010,30(12):54-56. 被引量:3
  • 4KRISHNAPURAM R, KELLER J. A possibilistic approach to cluste- ring[J]. IEEE Transactions on Fuzzy Systems, 1993, 1 (2):98 - 110.
  • 5武小红,周建江.可能性模糊C-均值聚类新算法[J].电子学报,2008,36(10):1996-2000. 被引量:34
  • 6PAL N R, PAL K, BEZDEK J C. A possibilistic fuzzy c-means clus- tering algorithm [ J] . IEEE Transactions on Fuzzy Systems, 2005, 13 (4):517 -530.
  • 7YANG M S, WU K L. Unsupervised possibilistic clustering [ J]. Pattern Recognition, 2006, 39(1) : 5 -21.
  • 8左浩,李雯.改进的PCM聚类算法在图像分割中的应用[J].计算机与数字工程,2010,38(11):148-151. 被引量:8
  • 9CAI W, CHEN S, ZHANG D Q. Fast and robust fuzzy c-means algorithms incorporating local information for image segmentation [ J]. Pattern Recognition, 2007,40(3) : 825 - 838.
  • 10SZILAGYI L, SZILAGYI S M, BENYOZ O. A modified FCM algorithm for fast segmentation of brain MR images [ M]// Analysis and Design of Intelligent Systems Using Soft Computing Techniques. Heidelberg: Springer, 2007:119 - 127,.

二级参考文献89

共引文献209

同被引文献142

引证文献12

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部