期刊文献+

结合优化算法的神经网络图像复原算法 被引量:3

Image restoration method based on neural network combining with optimization algorithms
原文传递
导出
摘要 提出了用遗传算法优化的神经网络和PSO算法优化的神经网络图像复原算法,并对它们的复原效果进行了比较.先用优化算法对神经网络的结构进行优化,然后利用优化后的神经网络的学习和泛化能力,用一组样本图像对网络进行训练,建立退化图像与原图像之间的非线性映射关系,最后用训练好的进化神经网络对待复原的退化图像进行图像复原.实验结果表明复原的图像无论在主观视觉还是定量分析上都取得了很好的效果. Image restoration method based on neural network combines with GA and image restoration method based on neural network combines with PSO are proposed, and their effects of image restoration are compared too. First, the structure of the neural network are optimized by optimization algorithms. Second,nonlinear mapping relationships between the blurred image and clear image are established by training the optimized neural network which has the ability of learning and generalizing with a group of sample image. At Last, blurred image which needs restoring could be restored by the trained evolving neural network. The results of experiments demonstrate that this method has a satisfying restoration effect both in visual impression and quantitative analysis.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期1081-1086,共6页 Journal of Sichuan University(Natural Science Edition)
关键词 图像复原 神经网络 遗传算法 PSO算法 image restoration, neural network, genetic algorithm, PSO algorithm
  • 相关文献

参考文献8

二级参考文献72

  • 1张航,罗大庸.图像盲复原算法研究现状及其展望[J].中国图象图形学报(A辑),2004,9(10):1145-1152. 被引量:53
  • 2李九生,鲍振武,金杰.半导体激光器的噪声特性神经网络仿真[J].光子学报,2005,34(2):195-198. 被引量:10
  • 3李代林,王向朝,刘英明.基于人工神经网络的大量程光纤实时距离干涉测量仪[J].光子学报,2005,34(6):865-868. 被引量:3
  • 4张邦礼,李银国,曹长修.小波神经网络的构造及其算法的鲁棒性分析[J].重庆大学学报(自然科学版),1995,18(6):88-95. 被引量:21
  • 5曾朝辉.CNN在图象处理中的应用:硕士论文[M].北京:北京大学电子系,1995..
  • 6Lee C C, Degyves J P. Color image processing in a cellular neu-rid-network environment [ J ]. IEEE Transactions on Neural Networks, 1996,7(5) :1086 - 1098.
  • 7Clarke L P, Qian W. Fuzzy-logic adaptive neural networks for nuclear medicine image restoration [A]. The 20th Annual International Conference on Engineering in Medicine and Biology Society[C]. 1998,vol. 3. 1363 - 1366.
  • 8Qian W, Clarke L P. Wavelet-based neural network with fuzzylogic adaptivity for nuclear image restoration [J]. Proceedings of the IEEE, 1996,84(10) :1458 - 1473.
  • 9Cheung H N, Bouzerdoum A, Newland W. Properties of shunting inhibitory cellular neural networks for colour image enhancement[ A]. The 6th International Conference on Neural Information Processing [ C]. 1999 ,vol. 3. 1219 - 1223.
  • 10Kondo K, Iguch M, Ishigaki H, et al. Design of complex-valued CNN filters for medical image enhancement [ A ]. IFSA World Congress and 20th NAFIPS International Conference [C]. 2001,vol. 3.1642 - 1646.

共引文献67

同被引文献35

  • 1史迎春,周献中,方鹏飞.综合利用形状和颜色特征的台标识别[J].模式识别与人工智能,2005,18(2):216-222. 被引量:13
  • 2樊纪香,张宏,李辉,王兵团.BP网络和多元线性回归在产量预测中的应用[J].计算机工程与应用,2007,43(23):203-204. 被引量:13
  • 3王正烈等.物理化学[M].北京:高等教育出版社,2001.
  • 4Yan W Q, Wang J, Mohan S K. Automatic video logo detection and removal[J]. Multimedia System, 2005, 10(5): 379.
  • 5Coozar J, Guil N, Gonzalez-Linares J, et al. Logotype detection to support semantic-based video anno- tation[J]. Signal Processing Image Communication, 2007, 22(7): 669.
  • 6Zenzo S D. A note on the gradient of a multi-image [J]. Compute Vision Graphics Image Processing, 1986, 33(1): 116.
  • 7SFPE. The SFPE handbook of fire protection engineering[M]. 2nd ed. Boston: Society of Fire Protection Engineers, 1995.
  • 8Migvia del C V. Binary mixture flammability characters for hazard assessment [D]. Texas: Texas A&M University, 2005.
  • 9Liaw H J, Lee Y H, Tang C L, et al. A mathematical model for predicting the flash point of binary solutions [J]. Journal of Loss Prevention in the Process Industries, 2002, 15(6): 429.
  • 10Patil G S. Estimation of flash point [J]. Fire and Materials, 1988, 12: 127.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部