期刊文献+

ARIMA模型在杭州市中小学生咳嗽症状监测中的应用 被引量:3

Applications of ARIMA Model on Syndromic Surveillance of Elementary and Middle-School Students in Hangzhou City
原文传递
导出
摘要 目的:探讨时间序列ARIMA模型在时间序列资料分析中的应用,建立咳嗽症状监测数据的预测模型.方法:采用条件最小二乘方法估计模型参数.通过对数转换及差分方法使原始序列平稳,按照残差不相关原则、简洁原则确定模型结构,依据AIC和SBC准则确定模型阶数,最终建立起ARIMA预测模型.结果:ARIMA(1,1,1)模型拟合效果较好,方差估计值为0.7361,AIC=95.6092,SBC=98.8310,对模型进行白噪声残差检验,提示残差为白噪声.结论:症状监测这种具有时间序列特点的资料可以用ARIMA模型来进行拟合估计.本文中预测结果可信区间比较宽,可能是因为时间序列比较短,还未能考虑到季节趋势.另外,所用监测数据是在中小学生在校发生症状的人数,故在节假日会出现缺失值,样本量和时间长度均有限,可能影响模型估计的准确性,本研究的结论还有待于将来资料积累后进行修正和深化. Objective To discuss the application of ARIMA model on data of time series and fit predictive model on syndromic surveillance.Methods Parameter of model was estimated based on conditional least squares.The structure was determined according to criteria of residual un-correlation and concision.ARIMA predictive model was fitted and the order of model was confirmed through Akaiake Information Criterion and Schwarz Bayesian Criterion.Results The effect of ARIMA(1,1,1) model was better than others.The estimation of variance was 0.7361, AIC=95.6092,SBC=98.8310.The analysis of white-noise residual of model showed that residual was white-noise series.Conclusion ARIMA model can be suitably applied on data of time series of symdromic surveillance.The credibility interval of forecast was a little wide,which might due to the time series were relatively short and the process of modeling didn't take the seasonal trends into account.In addition,there were missing values because of holidays.The accuracy of model may be affected by the relatively small sample size and the length of time series.The conclusion of this study has yet to be further confirmed in future studies.
出处 《生物数学学报》 CSCD 北大核心 2011年第3期563-568,共6页 Journal of Biomathematics
基金 2009年浙江省医药卫生科学研究基金计划(A类)(2009A175)
关键词 ARIMA模型 时间序列 症状监测 预测 ARIMA model Time series Syndromic surveillance Prediction
  • 相关文献

参考文献11

二级参考文献61

共引文献143

同被引文献18

  • 1GEOGE E,BOX P.时间序列分析预测与控制[M].顾岚,主译.范金城,校译.北京:中国统计出版社,1997.
  • 2Kashi Y,King D,Soller M.Simple sequence repeats as a source of quantitative genetic variation[].Trends in Genetics.1997
  • 3You-Chun Li,Abraham B Korol,Tzion Fahima,et al.Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review[].Molecular Ecology.2002
  • 4Lindstrom, S.E,Cox, N.J,Klimov, A.Genetic analysis of human H2N2and early H3N2influenza viruses,1957-1972: evidence for genetic divergence and multiple reassortmentevents[].Journal of Virology.2004
  • 5Usdin K.The biological effects of simple tandem repeats: Lessons from therepeat expansion diseases[].Genome Research.2008
  • 6Suresh B Mudunuri,Hampapathalu A. Nagarajaram.IMEx:Imperfect Microsatellite Extractor[].Geometric and Functional Analysis.2007
  • 7时间序列分析[M]. 中国统计出版社, 2000.时间序列分析[M]中国统计出版社,2000.
  • 8Bowerman B L,Richard T O’’Connell.Forecasting and Time Series. . 1993
  • 9彭志行,鲍昌俊,赵杨,易洪刚,唐少文,于浩,陈峰.ARIMA乘积季节模型及其在传染病发病预测中的应用[J].数理统计与管理,2008,27(2):362-368. 被引量:95
  • 10张彦琦,唐贵立,王文昌,易东.ARIMA模型及其在肺结核预测中的应用[J].现代预防医学,2008,35(9):1608-1610. 被引量:32

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部