摘要
A first principle method, based on the density functional theory, was used to investigate the average voltage of lithiation/delithiation for Li-ion battery materials across 7 categories and 18 series, including LiMO 2 , LiMn 2 O 4 , LiMPO 4 , Li 2 MSiO 4 and graphite. The average voltage of lithiation/delithiation in the relevant electrode materials was obtained by comparing the total-energy difference, before and after an electrochemical reaction. The calculated values were in good agreement with experimental data. The systematic difference between the simulated and experimental values could be explained in terms of the binding energy on the surface of the lithium electrode. This type of calculation method could be applied as an easy and effective tool for predicting the potential performance of new lithiation/delithiation materials.
A first principle method, based on the density functional theory, was used to investigate the average voltage of lithiation/delithiation for Li-ion battery materials across 7 categories and 18 series, including LiMO2, LiMn204, LiMPO4, Li2MSiO4 and graphite. The average voltage of lithiation/delithiation in the relevant electrode materials was obtained by comparing the total-energy difference, before and after an electrochemical reaction. The calculated values were in good agreement with experimental data. The systematic difference between the simulated and experimental values could be explained in terms of the binding energy on the surface of the lithium electrode. This type of calculation method could be applied as an easy and effective tool for predicting the potential performance of new lithiation/delithiation materials.
基金
supported by the National High Technology Research and Development Program of China (2009AA03Z226)
the National Natural Science Foundation of China (50702007 and 51072023)
the National Science Foundation (DMR-0821284)
NASA (NNX10AM80H and NNX07AO30A)