期刊文献+

混合变异克隆选择多目标优化算法 被引量:7

Hybrid Mutation Clonal Selection Multiobjective Optimization Algorithm
下载PDF
导出
摘要 研究多目标优化问题,针对提高算法的快速性,提出一种混合变异克隆选择多目标优化算法。进化在三个抗体群中进行,不同的抗体群采用不同的变异算子,并通过外部记忆抗体群的更新,来保留进化的最优抗体,避免算法进化后期出现退化现象。算法采用的三种变异算子:高频大尺度高斯变异算子带有振荡性质,能够对Pareto最优解区域进行勘探,单基因小尺度衰减的高斯变异算子能够使优化结果逼近Pareto最优解,均匀变异算子使算法具有局部逃逸能力,能够保证解的多样性。将算法和经典的NSGA-II、ε-MOEA算法以及单一变异的多目标克隆选择算法(MCSA)进行性能比较,结果证明新算法具有较好的快速搜索性能和鲁棒性。 In this paper,a hybrid mutation clonal selection multiobjective optimization algorithm was presented.In the algorithm,evolution was performed in three antibody groups,every group used different mutation operator,through the updated external memory antibody population to keep the Pareto optimal solution.The large-scale mutation operator could be utilized to quickly localize the global Pareto optimal space,the small-scale mutation operator could implement local accurate Pareto optimal solution search,and the uniform mutation operator could make the algorithm have the ability to escape from local optimal solution,which ensured the diversity of the algorithm.We compared the proposed method with NSGA-II,ε-MOEA and the multiobjective clonal selection algorithm(MCSA) based on the signal group in solving five DTLZ problems,and the experimental results show that the new algorithm is effective.
出处 《计算机仿真》 CSCD 北大核心 2011年第10期199-203,共5页 Computer Simulation
基金 国家自然科学基金(61074076) 中国博士后科学基金(20090450119) 中国博士点新教师基金(20092304120017)
关键词 多目标优化 克隆选择 混合变异 非支配 Multiobjective optimization Clonal selection Hybrid mutation Non-dominance
  • 相关文献

参考文献13

  • 1H Ishibuchi, N Tsukamoto and Y Nojima. Evolutionary Many - Objective Optimization : A Short Review [ C ]. In : Proc. Of the 2008 Congress on Evolutionary Computation. Hong Kong: IEEE, 2008. 2424 - 2431.
  • 2Coello Coello CA. Evolutionary multi -objective optimization: A historical, view of the field [ J]. IEEE Computational Intelligence Magazine, 2006 - 1, ( 1 ) :28 -36.
  • 3C C Nareli, A C Carlos. Muhiobjective Optimization Using the Clonal Selection Principle [ J ]. Lecture Notes in Computer Sci- ence, 2003,27(23) :158 - 170.
  • 4J L Yan, J W Tie. A Novel Immune Algorithm doe Complex Opti- mization Problems[ C]. Proceedings of the 5th World Congress on Intelligent Control and Automation. Hang Zhou : IEEE, 2004. 2279 - 2283.
  • 5C A Coollo Coello, N C Cortes. Solving multi - objective optimiza- tion problem using an artificial immune system [ J ]. Genetic Pro- gramming and Evolvable Machines. 2005 -6(2) :163 - 190.
  • 6M GGong, L C Jiao, H F Du, L F Bo. Multi -Objective immune algorithm with Pareto - optimal neighbor - based selection [ J ]. Evolutionary Computation, 2008,16 (2) : 225 - 255.
  • 7李恒杰,郝晓弘,张磊.基于Pareto的快速多目标克隆选择算法[J].计算机应用研究,2008,25(5):1368-1371. 被引量:5
  • 8K Deb, M Mohan, S Mishra. Evaluating the ε - domination based multi - objective evolutionary algorithm for a quick computation of Paret0 - optimal solutions [ J ]. Evolutionary Computation, 2005, 13(4) : 501 -525.
  • 9Deb K, et al. A fast and elitist multi - objective genetic algorithm: NSGA -Ⅱ[ J]. IEEE Trans on Evolutionary Computation, 2002,6 (2) :1822197.
  • 10王震,陈云芳.基于人工免疫的多目标优化研究综述[J].计算机应用研究,2009,26(7):2422-2426. 被引量:6

二级参考文献62

  • 1Carlos A Coello. An Updated Survey of GA - Based Multiobjective Optimization Techniques [ J ]. ACM Computing Surveys, June 2000, 32(2).
  • 2Marco Laumanns. Bayesian Optimization Algorithms for Muhi - objective Optimization [ J ] , J J Merelo Guerv? os et al. ( Eds. ) : PPSN VII, LNCS 2439, 2002. 298 - 307.
  • 3J M Pe na. Unsupervised Learning Of Bayesian Networks Via Estimation Of Distribution Algorithms: An Application To Gene Expression Data Clustering[ J]. International Journal of Uncertainty, Fuzziness and Knowledge - Based Systems, 2003.
  • 4Martin Pelikan. Muhiobjective Estimation of Distribution Algorithms[ J]. Studies in Computational Intelligence ( SCI ) , 2006, 33:223 - 248.
  • 5Peter A N Bosman. Numerical Optimization with Real - Valued Estimation - of - Distribution Algorithms [J]. Studies in Computational Intelligence (SCI) 2006,33 ; 91 - 120.
  • 6K C Tan. Evolving better population distribution and exploration in evolutionary multi - objective optimization [ J ], European Journal of Operational Research 171,2006. 463 - 495.
  • 7Shu Min Yang. A novel evolution strategy for multi - objective optimization problem[J]. Applied Mathematies and Computation 170 ,2005. 850 - 873.
  • 8FRESCHI F, REPETTO M. VIS: an artificial immune network for multi-objective optimization[ J]. Engineering Optimization, 2006,38(8) :975-996.
  • 9GASPAR, COLLARD P. Two models of immunization for time independent optimization[ C]//Proc of IEEE International Conference on Systems, Man, and Cybernetics. 2000 : 113-118.
  • 10JIAO Li-cheng, GONG Mao-guo, SHANG Rong-hua, et al. Clonal selection with immune dominance and energy based muhiobjective optimization [ C ]//Proc of the 3rd International Conference on Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2005: 474- 489.

共引文献16

同被引文献66

  • 1杜海峰,焦李成,刘若辰.免疫优势克隆算法[J].电子与信息学报,2004,26(12):1918-1924. 被引量:22
  • 2马辉,方群,袁建平.空间拦截修正比例导引律研究[J].飞行力学,2006,24(1):52-54. 被引量:6
  • 3周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 4胡江强,郭晨,尹建川,李铁山.分级变异的动态克隆选择算法[J].控制与决策,2007,22(6):608-612. 被引量:11
  • 5周建华,徐茂,冯全胜.轨道力学[M].北京:科学出版社,2009.
  • 6KHAN N, GOLDBERG D E, PELIKAN M. Multi-objective Bayesian optimization algorithm [ R ]. Urbana, USA : Uni- versity of Illinois at Urbana-Champaign, 2002.
  • 7OKABE T, JIN Y, SENDHOFF B, et al. Voronoi-based es- timation of distribution algorithm for multi-objective optimi- zation [ C ]//Proceedings of the 2004 Congress on Evolution- ary Computation. Piscataway, USA, 2004: 1594-1601.
  • 8SASTRY K, PELIKAN M, GOLDBERG D E. Decompos- able problems, niching, and scalability of muhiobjective es- timation of distribution algorithms[ R]. Urbana, USA : Uni- versity of Illinois at Urbana-Champaign, 2005.
  • 9ZHANG Qingfu, ZHOU Aimin, JIN Yaochu. RM-MEDA : a regularity model-based multiobjective estimation of distribu- tion algorithm[ J]. IEEE Transactions on Evolutionary Com- putation, 2008, 12( 1 ) : 41-63.
  • 10STORN R, PRICE K. Differential evolution--a simple and efficien! adaptive scheme for global optimization over contin- uous spaces[ J ]. Journal of Global Optimization, 1997, 11 (4) : 341-359.

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部