摘要
获得了Riesz定理之逆定理,即证明了fn(x)■f(x)于E对任意子列fni(x),存在该子列的子列fnij(x)→a.ef(x)于E,且1/k,N,m ∞∪ni=N E[fni-f≥1/k]<+∞.
Inverse Theorem of Riesz's theorem is obtained.That is we proved that fn(x)■f(x) on E if and only if {fnij(x)}{fni(x)} for any {fni(x)}{fn(x)} which satisfy fnij(x)→a.ef(x) on E,and N,m ∞∪ni=N E[fni-f≥1/k]+∞ for any 1/k is proved.
出处
《内蒙古师范大学学报(自然科学汉文版)》
CAS
2011年第5期477-479,共3页
Journal of Inner Mongolia Normal University(Natural Science Edition)
基金
四川省人才培养与教学改革项目(P09264)
四川省科技厅应用基础项目(2008JY01122)
四川省人事厅出国留学人员科技资助项目(川人社函(2010)32号)
关键词
RIESZ定理
可测函数
近一致收敛
几乎处处收敛
依测度收敛
Riesz's theorem
measurable function
almost uniform convergence
almost everywhere convergence
convergence in measure