期刊文献+

基于优先级的Three-Queue调度算法研究 被引量:4

Research of Three-Queue Scheduling Algorithms Based on Priority
下载PDF
导出
摘要 针对Hadoop平台上调度算法存在的不足,提出了一种改进的调度算法———Triple-Queue算法。在充分考虑数据的本地性后,Triple-Queue算法设计了一种改进的优先级计算模型,以有效地区分用户作业的等级,同时又保证一定程度的公平性,进而减小作业执行时间,避免系统资源浪费。实验结果表明,随着数据量的提高,该算法执行效率明显提高,同时能够较好地解决数据本地性问题。 For solving the shortage of scheduling algorithms on the Hadoop platform,the paper proposed an improved scheduling algorithm-Triple-Queue algorithm.After taking full account of data locality,the Triple-Queue algorithm designs a improved computational model of priority,which can distinguish the user's job levels clearly and ensure a certain degree of fairness,so as to reduce the job execution time and avoid wasting system resources.The results of experiment show that the algorithm improves the efficiency significantly and solves the problem of data locality better with the increased amount of data.
出处 《计算机科学》 CSCD 北大核心 2011年第B10期253-256,共4页 Computer Science
关键词 调度 Triple-Queue 数据本地性 MAPREDUCE Scheduling Triple-Queue Data locality Map reduce
  • 相关文献

参考文献11

  • 1Dean J,Ghemawat S. MapReduee: Simplified data processing on large elusters[C]///OSDI' 04: Sixth Symposium on Operating System Design and Implementation. 2004:137-150.
  • 2Zaharia M, Borthakur D, Sarma J S. Job seheduleing for multiuser mapreduce clusters[C]//Proceedings of the 5th European Conference IEEE. 2009 : 145-161.
  • 3Matei Zaharia, Dhruba Borthakur and Joydeep Sen Sarma. Delay scheduling:a simple technique for achieving locality and fairness in cluster scheduleing[C]// EuroSys ' 10: Proceedings of the 5th European conference on Computer systems. 2010:265-278.
  • 4Polo J, de Nadal D, Carrera D. Adaptive Task Scheduling for MultiJob MapReduce Environments[C] // Proceedings of the 2010 Eighth International Conference on Grid and Cooperative Computing IEEE. 2010:326-332.
  • 5Thomas Sandholm and Kevin Lai. Dynamic proportional share scheduling in hadoop[C]//JSSPP ' 10: 15th Workshop on Job Scheduling Strategies for Parallel Processing. 2010:110-131.
  • 6Polo J, Carrera D, Becerra Y. Performance-driven task co-scheduling for rnapr- educe environrnents[C]//Network Operations and Management Symposium(NOMS), IEEE. 2010 : 373-380.
  • 7Tian C, Zhou H, Zha L. A dynamic MapReduce scheduler for heterogeneous workloads[C]//Proceedings of the 2009 Eighth International Con ference on Grid and Cooperative Computing. IEEE Computer Society, 2009 :218-224.
  • 8陈全,邓倩妮.异构环境下自适应的Map-Reduce调度[J].计算机工程与科学,2009,31(A01):168-171. 被引量:21
  • 9Apache Hadoop[OL]. http://hadoop, apache org/.
  • 10Fair Scheduler for Hadoop[EB/OL]. http://Hadoop, apache. org/eommon/does/eurrent/Fair_scheduler, html, 2010-04-15.

二级参考文献10

  • 1Vaquero L M, Rodero-Merino L, Caceres J, et al. A Break in the Clouds: Towards a Cloud DefinitionD]. ACM SIGCOMM Computer Communication Review, 2009, 39 ( 1 ) : 50- 55.
  • 2Bryant R E. Data-Intensive Supercomputing: the Case for DISC[R]. CMU Technical Report CMU-CS-07-128, Department of Computer Science, Carnegie Mellon University, 2007.
  • 3Dean J, Ghemawat S. MapReduce: Simplied Data Processing on Large Clusters[C]//Proc of OSDI '04,2004 : 137-150.
  • 4Colbyranger, Raghuraman R, Penmetsa A. Evaluating MapReduce for Multi-Core and Multiprocessor Systems[C]//Proc of the IEEE 13th Int'l Syrup on High Performance Computer Architecture, 2007 : 13-24.
  • 5Kruijf M D, Sankaralingam K. MapReduce for the Cell B. E. Architecture[-R]. Technical Report CS-TR-2007-1625, University of Wisconsin Computer Sciences University of Wisconsin, 2007.
  • 6He B S, Fang W B, Luo Q, et al. Mars: A MapReduce Framework on Graphics Processors[C]//Proc of the 17th Int'l Conf on Parallel Architectures and Compilation Techniques, 2008 : 260-269.
  • 7Apache Hadoop. Hadoop [EB/OL]. [2009-03-06]. http://hadoop, apache, org/.
  • 8Yahoo. Yahoo! Hadoop Tutorial [EB/OL]. [2009-02-27]. http:// public, yahoo, com/gogate/hadoop-tutorial/start-tutorial, html.
  • 9Ghemawat S, Gogioff H, Leung P T. The Google File System[C]//Proc of the 19th ACM Syrnp on Operating Systems Principles, 2003 : 29-43.
  • 10Zaharia M, Konwinski A, Joseph A D. Improving MapReduce Performance in Heterogeneous Environments [C]//Proc of the 8th Usenix Syrup on Operating Systems Design and Implementation, 2008 : 29-42.

共引文献20

同被引文献92

  • 1李振东,谢立.Web服务器群的QoS确保及其接纳控制研究[J].计算机研究与发展,2005,42(4):662-668. 被引量:9
  • 2施朝健,张明铭.Logistic回归模型分析[J].计算机辅助工程,2005,14(3):74-78. 被引量:23
  • 3段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2006:33-35.
  • 4Dean J, Ghemawat S. MapReduee:Simplified data processing on large clusters[ C]//Proc of Sixth Symposium on Operating System Design and Implementation. Berkeley : USENIX Asso- ciation, 2004 : 137-150.
  • 5Zaharia M, Borthakur D, Sarma J S. Job scheduling for multi- user Mapreduce clusters[ C ]//Proceedings of the 5th Europe- an Conference. Washington : IEEE Computer Society, 2009 : 145-161.
  • 6Zaharia M, Borthakur D, Sarma J S. Delay scheduling: a simple technique for achieving locality and fairness in cluster schedu- ling [ C ]//Proceedings of the 5th European Conference on Computer Systems. New York : ACM ,2010:265-278.
  • 7Jorddal P, Claris C, David C, et al. Resourceaware adaptive scheduling for MapReduce clusters [ C ]//Middleware 2011 - ACM/IFIP/USENIX 12th International Middleware Confer- ence. New York : ACM ,2011 : 187-205.
  • 8Apache Hadoop [ EB/OL]. 2012-04-16. http://hadoop, a- pache, org/.
  • 9CloudSim [ EB/OL ]. 2012 - 02 - 11. http ://www. cloudbus. org/cloudsim/.
  • 10Hadoop公平调度算法[EB/OL].2010-02-19.http://ha-doop.apache.org/docs/rO.20.2/fair_scheduler.html.

引证文献4

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部