期刊文献+

一种基于纳什议价解的自组网时隙分配策略 被引量:3

Time slot scheduling scheme of MANET based on Nash bargain solution
下载PDF
导出
摘要 自组网中的分布式多节点资源分配问题为NP完全问题,一般采用启发式算法进行协议设计,缺少严格的数学证明。基于博弈与纳什议价解理论,提出了一种分布式动态时隙分配策略,并通过严格的数学推导,证明了自组网中不同节点之间的时隙竞争问题存在纳什议价解,为自组网中分布式动态时分多址信道访问控制协议的设计提供了理论依据。 There is lack of mathematical attestation of heuristic protocols in mobile ad hoc networks (MANET) because the distributed resource-sharing problem is NP-complete. A novel distributed dynamic time slot scheduling scheme was proposed based on rigid mathematical deduction with game theory (GT) and Nash bargain solution (NBS). It was proved that a NBS for the slot competence existing between different nodes provides the theoretical evidence for the distributed dynamic time division multiple access protocol in MANET.
出处 《海军工程大学学报》 CAS 北大核心 2011年第5期72-75,107,共5页 Journal of Naval University of Engineering
基金 海军工程大学自然科学基金资助项目(HGDQNJJ021)
关键词 纳什议价解 MANET 时隙 博弈理论 NBS MANET time slot game theory
  • 相关文献

参考文献9

  • 1LEINO J. Applications of Game Theory in Ad Hoc Networks [D]. Finland: Helsinki University of Technology, 2003.
  • 2FAN X, ALPCAN T. A passivity approach to game-theoretic CDMA power control [J]. Automatica, 2006,42 (11):1837-1847.
  • 3ANDEREGG L, EIDENBENZ S. Routing and forwarding: Ad hoc-VCG: A truthful and cost-efficient routing pro- tocol for mobile ad hoc networks with selfish agents [C]//Proc. of the 9th Annual International Conference on Mobile Computing and Networking. San Diego, CA:Georgia Institute of Technology, 2003.
  • 4韩露,魏蛟龙,周曼丽,叶俊.基于演化博弈的MANET路由算法[J].华中科技大学学报(自然科学版),2006,34(12):30-32. 被引量:2
  • 5赵力强,邹向毅,张国鹏,张海林.基于博弈理论的无线Ad Hoc网络MAC协议研究[J].计算机工程,2008,34(12):79-81. 被引量:2
  • 6徐许亮,董荣胜,刘亮龙.无线自组网中节点协作的纳什均衡研究[J].计算机工程,2010,36(4):107-109. 被引量:4
  • 7LU B, POOCH U W. A game theoretic framework for bandwidth reservation in mobile ad hoc networks [C]// Proc. of the First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks. Dallas, TX: University of Texas at Dallas, 2004.
  • 8GEORGIADIS L, JACQUET P. Bandwidth reservation in multihop wireless networks: Complexity and mechanisms [C]//24th International Conference on Distributed Computing Systems Workshops. Tokyo: Keio University, 2004.
  • 9N ASH J. The bargaining problem [J]. Eeonometrica, 1950,18: 155 - 162.

二级参考文献21

  • 1陈立家,江昊,吴静,郭成城,徐武平,晏蒲柳.车用自组织网络传输控制研究[J].软件学报,2007,18(6):1477-1490. 被引量:46
  • 2Soltanali S, Pirahesh S, Niksefat S, et al. An Efficient Scheme to Motivate Cooperation in Mobile Ad Hoc Networks[C]//Proc. of ICN'07. Athens, Greece: [s. n.], 2007.
  • 3Marti S, Giuli T, Lai Kevin, et al. Mitigating Routing Misbehavior in Mobile Ad Hoc Networks[C]//Proc. of IEEE Int'l Conference on Mobile Computing and Networking. [S. l.]: IEEE Press, 2000.
  • 4DaSilva L A, Srivastava V. Node Participation in Peer-to-Peer and Ad Hoc Networks: A Game Theoretic Forrnulation[C]//Proc. of the 1st Workshop on Games and Emergent Behavior in Distributed Computing Environments. Birmingham, UK: [s. n.], 2004.
  • 5Buttyan L, Hubaux J P. Stimulating Cooperation in Self-organizing Mobile Ad Hoc Networks[J]. ACM/Kluwer Mobile Networks and Applications, 2003, 8(5): 579-592:.
  • 6Nadeem T, Dashtinezhad S, Liao Chunyuan, et al. TrafficView: Traffic Data Dissemination Using Car-to-car Communication[J]. ACM SIGMOBILE Mobile Computer and Communication Review, 2004, 8(3): 6-19.
  • 7Corson S, Maeker J. Mobile Ad hoe networking(MANET) : routing protocol performance issues and evaluation considerations (RFC 2501)[S].[S. L] :IETF, 1999.
  • 8Johnson D, Maltz D. Dynamic source routing in Ad hoc wireless networks[C] // Mobile Computing, MA (Norwell): Kluwer, 1996z 153-181.
  • 9Perkins C E, Royer E M. Ad-hoc on-demand distance vector routing[C]//Proeeedings of 2nd IEEE Workshop on Mobile Computing Systems and Applications. New Orleans: IEEE Computer Society, 1999:90-100.
  • 10Karp B, Kung H T. Greedy perimeter stateless routing for wireless networks[C] // Proceedings of ACM-IEEE MobiCom'00. MA:ACM/IEEE, 2000,8:243-254.

共引文献5

同被引文献26

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部