期刊文献+

基于贝叶斯网络的出行选择行为分析 被引量:10

Travel Choice Analysis by Bayesian Networks
下载PDF
导出
摘要 以通勤出行者为研究对象,应用改进K2算法和贝叶斯参数估计方法,以模块化的建模思想,构造了分析通勤出行方式选择和出行链模式安排及其相互作用的贝叶斯网络模型.以互信息指标度量节点间相互依赖关系的强弱,完成网络的修剪.以修剪后的网络为基础,应用敏感性分析讨论了在出行者及其家庭的社会经济属性、活动和出行属性影响下的出行方式和出行链模式安排的变化,及其相互影响.本文的研究为全面分析活动—出行选择行为及其影响因素间的互动响应关系提供了新的思路. In this paper, a Bayesian network was developed to investigate the mode choice decision and trip chaining behavior of commuters as two interrelated modules. The model was based on the K2 algorithm and Bayesian estimation method. The original model was pruned based on mutual information of finding variables for travel mode and trip chaining choice variables. A detailed sensitivity analysis report of the pruned network was provided for a quantitative evaluation of the influence of significant finding variables on the two travel behavior choices. The results provide useful insights into the effects of sociodemographics, activity and travel characteristics on commuters' travel model and trip chaining propensity. This study also provides an important analysis tool for a comprehensive research of activitytravel pattern based on the influence factors and their interrelations mechanism.
出处 《交通运输系统工程与信息》 EI CSCD 2011年第5期167-172,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金资助项目(51008190 50878129) 上海市教委科研创新项目(11YS271)
关键词 城市交通 出行方式 出行链模式 贝叶斯网络 敏感性分析 urban traffic travel mode trip chain pattern Bayesian networks sensitivity analysis
  • 相关文献

参考文献8

  • 1Pinjari A R, Bhat C R.A multiple discretecontinuous nested extreme value (MDCNEV) model: formulation and application to non-worker activity timeuse and timing behavior on weekdays [J].Transportation Research Part B, 2010, 44(4): 562-583..
  • 2Ye X.Development of models for understanding causal relationship among activity and travel variables [D].University of South Florida, 2006..
  • 3Primerano F, Taylor M A P, Pitaksringkarn L, et al.P.Defining and understanding trip chaining behavior [J].Transportation, 2008, 35(1): 55-72..
  • 4Nobis C.Multimodality:Facets and causes of sustainable mobility behavior [J].Transportation Research Record,2007,2010:35-44..
  • 5Currie G,Delbosc A.Exploring the trip chaining behavior of public transport users in Melburne [J].Transport Policy, 2011, 18(1): 204-210..
  • 6Janssen D,Wets G,Bruijs K,et al.Identifying behavioral principles underlying activity patterns by means of Bayesian networks[C].the 82nd Annual Meeting of the Transportation Research Board, 2003, Washington, D.C..
  • 7Jianchuan X Y, Zhicai J, Linjie G, et al.Empirical analysis of commuters’ nonwork stopmaking behavior in Beijing, China [J].Journal of Transportation Engineering, 2011, 137(5): 360-369..
  • 8Moninder S,Marco,V.Construction of Bayesian network structures from data:A brief survey and an efficient algorithm [J].International Journal of Approximate Reasoning,1995,12(2):111-131..

同被引文献72

  • 1洪永淼,汪寿阳.大数据、机器学习与统计学:挑战与机遇[J].计量经济学报,2021(1):17-35. 被引量:60
  • 2许洪国,张慧永,宗芳.交通事故致因分析的贝叶斯网络建模[J].吉林大学学报(工学版),2011,41(S1):89-94. 被引量:18
  • 3宗芳,隽志才.基于活动的出行方式选择模型与交通需求管理策略[J].吉林大学学报(工学版),2007,37(1):48-53. 被引量:43
  • 4Janssens D. , Wets G. , Brijs T. , Vanhoof K. , Arentze T. , Tim- mermans H. Integrating Bayesian networks and decision trees in a sequential rule-based transportation model [ J ]. European Journal of Operational Research, 2006 ( 175 ) : 16 - 34.
  • 5Hinsbergen C. P. IJ. van, Lint J. W. C. van, Zuylen H.J. van. Bayesian committee of neural networks to predict travel times with confidence intervals [ J ]. Transportation Research Part C, 2009 ( 17 ) :498 - 509.
  • 6MCFADDEN D. Conditional logit analysis of qualitative choice behavior[M], in Zarembka, Frontiers in Economet- rics. New York: Academic Press,I974.
  • 7Daniel Mcfadden. A Method of simulated Moments for Esti- mation of Diserete Reponse Models Without Numerieal In- tegration[J]. Econometrieal, 1989,57(5) : 995- 1026.
  • 8Daniel Mcfadden, Kenneth Train. Mixed MNL Models for Discrete Response [J]. Journal of Applied Econometrics, 2000, 15(5) ..447-470.
  • 9Huang H L, Abdel A M, Darwiche A L. County-level crash risk analysis in florida: Bayesian spatial modeling[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010(2148): 27- 37.
  • 10Hinsbergen, Lint, Zuylen. Bayesian committee of neural networks to predict travel times with confidence intervals[J]. Transportation Research Part C: Emerging Technologies,2009,17(5): 498-509.

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部