期刊文献+

基于自适应极坐标变换的景象匹配算法 被引量:4

Exploring an Effective Scene Matching Algorithm Using Adaptive Polar Transform(APT)
下载PDF
导出
摘要 对数极坐标投影变换以其对旋转及尺度的不变性而在景象匹配中广泛应用,但这种方法计算复杂且对图像的遮挡非常敏感。自适应极坐标投影变换,一方面保持了对数极坐标投影变换的旋转及尺度不变性,同时对图像间的局部遮挡具有鲁棒性且计算量相对较少。为此,把自适应极坐标投影变换应用到景象匹配中,提出了一种基于自适应极坐标变换的景象匹配算法。结合景象匹配辅助导航系统的实际给出了进一步的改进措施:根据自适应极坐标投影变换的特点,设计了一种新的相似性度量方法;创建虚拟圆索引模板,实现了在基准图上圆形子图的快速截取;在多分辨率匹配技术的基础上,进一步采用跳跃式搜索,有效缩减了匹配耗时。仿真实验表明,所提算法在实时性及鲁棒性方面优于传统的对数极坐标匹配算法。 Aim. The introduction of the full paper reviews a number of papers in the open literature and then proposes the research mentioned in the title. Starting from Ref. 11, sections 1,2 and 3 explain our exploration. Section 1 briefs the APT of Ref. 11. Section 2 not only applies APT to scene matching but also deems it necessary to add three technical measures to make scene matching more effective than previously possible : ( 1 ) a new similarity measure is designed using a threshold; (2) a fast circular subimage location method is used by creating an index template; (3) a pixel-jump searching method combined with a multi-resolution imaging technique is used to reduce the computational load. Section 3 analyzes the complexity of our scene matching algorithm and we believe we have made some progress in making it possess real-time capability. Simulation results, presented in Table 1, and their analysis show preliminarily that our scene matching algorithm is better than the conditional LPT based scene matching algorithm for real time and robustness.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2011年第5期702-708,共7页 Journal of Northwestern Polytechnical University
基金 航空科学基金(20100853010)资助
关键词 对数极坐标变换 自适应极坐标变换 索引模板 象素跳跃式搜索 image processing, computer vision, algorithms, (APT), index template, pixel-jump searching log-polar transform ( LFr), adaptive polar transform
  • 相关文献

参考文献10

二级参考文献43

共引文献65

同被引文献36

  • 1王永明.N帧连续景象匹配一致性决策算法[J].计算机学报,2005,28(6):1032-1035. 被引量:5
  • 2李天池,张绍明,何向晨,陈鹰.基于位置关系约束的SAR图像与光学图像匹配[J].系统工程与电子技术,2007,29(6):878-882. 被引量:6
  • 3Heikkil? M,Pietik?inen M,Schmid C.Description of Interest Regions with Local Binary Patterns[J].Elsevier Pattern Recognition,2009,42(3):425-436.
  • 4Lowe D.Object Recognition from Local Scale-invariant Features[C]//Proc.of International Conference on Computer Vision.Washington D.C.,USA:IEEE Computer Society,1999.
  • 5Lowe D.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal on Computer Vision,2004,60(2):91-110.
  • 6Sun Junding,Zhu Shisong,Wu Xiaosheng.Image Retrieval Based on an Improved CS-LBP Descriptor[C]//Proc.of the 2nd IEEE International Conference on Information Management and Engineering.Chengdu,China:[s.n.],2010.
  • 7Calonder M,Lepetit V,Fua P.BRIEF:Binary Robust Indepent Elementary Features[C]//Proc.of ECCV’10.Crete,Greece:[s.n.],2010.
  • 8Zhao Guoying.Rotation-invariant Image and Video Descrip-tion with Local Binary Pattern Features[J].IEEE Transactions on Image Processing,2012,21(4):1465-1477.
  • 9Fathi A,Reza A.Noise Tolerant Local Binary Pattern Operator for Efficient Texture Analysis[J].Pattern Recognition Letters,2012,33(9):1093-1100.
  • 10Yuan Baohua,Cao Honggen,Chu Jiuliang.Combining Local Binary Pattern and Local Phase Quantization for Face Recognition[C]//Proc.of International Symposium on Biometrics and Security Technologies.Taipei,China:[s.n.],2012.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部