期刊文献+

表面活性剂冲洗修复土壤油污染多相运移数值模型研究 被引量:2

Study on numerical model of multi-phase transport for surfactant flushing for remediation of NAPLs in soil
原文传递
导出
摘要 数值模型是分析土壤油污染和设计修复方案的有利工具。本文开发了描述表面活性剂增溶、促流机制的模型,并将其集成于NAPL模型,从而构建了表面活性剂冲洗修复土壤油污染多相运移模型,此模型可用于模拟饱和带和非饱和带的情况。用表面活性剂冲洗模型模拟了柴油泄漏、重分布和表面活性剂冲洗砂介质中柴油的试验情景,模型可很好地体现表面活性剂冲洗中的增溶、促流机制,模型模拟结果与试验结果吻合较好。水冲洗对土壤中自由态油的去除效果显著,实际中可先用水冲洗,冲洗至油近残余饱和态时再用表面活性剂冲洗,以降低成本。表面活性剂冲洗较水冲洗能更快更好地修复土壤油污染。 The numerical model is a helpful tool for analyzing oil pollution in soil and designing remediation projects. The model describing mechanism of surfactant solubilization and mobilization was established, and integrated into the NAPL model, thus a multi-phase transport model was built, which could model surfactant flushing for remediation of NAPLs in soil and can be used in zone. Then the surfactant flushing model was applied into experimental scenes, in which diesel leaking, diesel redistributing and surfactant flushing of the diesel in the sand medium were modeled. The model could reflect the surfactant solubilization and mobilization mechanism excellently, the simulation results accord with the experimental results well. Water flushing has remarkable effect on wiping off the free NAPLs, in practice, the water flushing can be adopted firstly, then the surfactant flushing can be used when the NAPLs saturation reach the residual saturation, this could reduce remediation costs. Surfactant flushing can remediate the NAPLs contamination more quickly and better than water flushing.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2011年第5期614-622,共9页 Chinese Journal of Hydrodynamics
基金 国家自然科学基金资助项目(40772148) 中央高校基本科研业务费专项资金(2009SD-19)资助
关键词 表面活性剂冲洗 土壤修复 油污染 增溶 促流 surfactant flushing soil remediation NAPLs contamination solubilization mobilization
  • 相关文献

参考文献13

  • 1ABRIOLA L M. Modeling multiphase migration of organic chemicals in groundwater system--a review and assessment[J]. Environmental Health Perspectives, 1989, 83(2): 117-143.
  • 2MACKAY D M, CHERRY J A. Groundwater contamination: pump-and-treat remediation[J]. Environ. Sci, Technol., 1989, 23(6): 630-636.
  • 3DEKKER T D, ABRIOLA L M. The influence of fieldscale heterogeneity on the surfsctant-enhanced remediation of entrapped nonaqueous phase liquids[J]. Journal of Contaminant Hydrology, 2000, 42(3): 219-251.
  • 4POPE G A, KAMY S, MUKUL M S, et al. Three- dimensional NAPL fate and transport model[R]. EPA/600/R-99/011, USA, 1999.
  • 5王开丽,黄冠华.强变异渗透系数对地下水和溶质迁移影响的模拟研究[J].水动力学研究与进展(A辑),2010,25(4):542-550. 被引量:8
  • 6LIN Lin,YANG Jin-Zhong,ZHANG Bin,ZHU Yan.A SIMPLIFIED NUMERICAL MODEL OF 3-D GROUNDWATER AND SOLUTE TRANSPORT AT LARGE SCALE AREA[J].Journal of Hydrodynamics,2010,22(3):319-328. 被引量:19
  • 7GUARNACCIA J, P1NDER G. NAPL: Simulator documentation[R]. EPA/600/R-97/102, USA, 1997.
  • 8ZHOU Wen-jun, ZHU Li-zhong. Distribution of polycyclic aromatic hydrocarbons in soil-water system containing a nonionic surfactant[J]. Chemosphere, 2005, 60(9): 1237-1245.
  • 9ABRIOLA L M, CONDIT W E, COWELL M A. Investigation of the influence of soil texture on rate limited micellar solubilization[J]. Journal of Environmental Engineering, 2000, 126(1): 39-46.
  • 10PENNELL K D, POPE G A, ABRIOLA L M. Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene[J]. Journal of Contaminant Hydrology, 1994, 16(1): 35-53.

二级参考文献40

  • 1阎婷婷,吴剑锋.渗透系数的空间变异性对污染物运移的影响研究[J].水科学进展,2006,17(1):29-36. 被引量:34
  • 2FREEZE R A, CHERRY J A. Groundwater[M]. Upper Saddle River, NJ: Prentice-Hall, 1979.
  • 3NEUMAN S P, ZHANG Y K. A quasi-linear theory of non-Fickian and Fickian subsurface dispersion, 1.Theoretical analysis with application to isotropic media[J]. Water Resources Research, 1990, 26(5): 887-902.
  • 4RUSSO D, BOUTON M. Statistical analysis of spatial variability in unsaturated flow parameters [J]. Water Resources Research, 1992, 28(7): 1911- 1925.
  • 5GELHAR L W. Stochastic subsurface hydrology[M]. Englewood Cliffs, NJ: Prentice-Hall, 1993.
  • 6HASSAN A E, CUSHMAN J H, DELLEUR J W. Monte Carlo studies of flow and transport in fractal conductivity fields: Comparison with stochastic perturbation theory[J]. Water Resources Research, 1997, 33(11): 2519-2534.
  • 7PAINTER S, MAHINTHAKUMAR G. Prediction uncertainty for tracer migration in random heterogeneities with multifractal character[J]. Advances in Water Resources, 1999, 23(1): 49-57.
  • 8HUANG H, HASSAN A E, HUB X. Monte Carlo study of conservative transport in heterogeneous dual-porosity media[J]. Journal of Hydrology, 2003, 275(3): 229-241.
  • 9DAGAN G. Flow and transport in porous formations[M]. New York: Springer-Verlag, 1989.
  • 10TIEDEMAN C, GORELICK S M. Analysis of uncertainty in optimal groundwater contaminant capture design[J]. Water Resources Research,, 1993, 29(7): 2139- 2154.

共引文献23

同被引文献18

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部