期刊文献+

低充水液舱晃荡气垫效应的数值分析 被引量:7

Numerical investigation of air cushion effects on low filling sloshing impacts
原文传递
导出
摘要 为了研究空气可压缩性对液仓晃荡和流体动力载荷的影响,建立了基于NS方程和VOF方法的自由表面流动数学模型,其中气相可作为可压缩介质。通过单涡演化、溃坝和受迫晃荡三个典型算例的计算,验证了数值方法的有效性。与现有的实验结果对比发现,考虑气相可压缩的两相流模型能合理地反映液仓侧壁的压力振荡过程,而基于气相不可压缩假定的数值模型则无法给出合理的结果。采用空气可压缩的两相流模型,给出了不同背景压强作用下液舱晃荡形态及液体对壁面的拍击力。通过比较壁面监测点的压力时间过程线的计算结果和现有的实验数据,表明考虑空气可压缩性的两相流模型可以很好地预报最大压力峰值,并较合理地给出压力振荡过程,因此有必要在液仓晃荡与流动动力预报中考虑空气的气垫效应。 To investigate the effects of air compressibility on the two phase low filling sloshing, a two dimensional numerical model was developed based on the NS equations and VOF method, in which the air phase could be treated as a compressible fluid. Comparing with experimental results, the air-entrapment and its effects on hydrodynamic loads could not be well predicted with the incompressible air assumption. The existence of compressible air cushion will result in the pressure oscillation on the sidewalls during sloshing process. Finally, numerical investigations of sloshing at low fillings in depressurized conditions were conducted. It turns out that the leading pressure peak value could be well predicted.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2011年第5期623-630,共8页 Chinese Journal of Hydrodynamics
基金 上海市重点学科建设项目(B206)资助
关键词 晃荡 气泡振荡 可压缩性 气垫效应 sloshing air-entrapment air compressibility air cushion
  • 相关文献

参考文献26

  • 1BASS R L, BOWLES E B, TRUDELL R W, et al. Modeling criteria for scaled LNG sloshing experiments[J]. Transactions of the ASME, 1985, 107(2): 272-280.
  • 2HATTORI M, ARAMI A, YUI T. Wave impact pressure on vertical walls under breaking waves of various types[J]. Coastal Engineering, 1994, 22(1-2): 79-114.
  • 3LUGNI C, BROCCHINI M, FALTINSEN O M. Wave impact loads: The role of the flip-through[J]. Physics of Fluids, 2006, 18(12): 101-122.
  • 4LUGNI C, MIOZZI M, BROCCH1NI M, et al. Evolution of the air cavity during a depressurized wave impact. I. The kinematic flow field[J]. Physics of Fluids, 2010, 22(5): 056101.
  • 5LUGNI C, BROCCHINI M, FALTINSEN O M. Evolution of the air cavity during a depressurized wave impact. II. The dynamic field[J]. Physics of Fluids, 2010, 22(5): 056102.
  • 6WEMMENHOVE R, LOTTS E, LUPPES R, et al. Modeling two-phase flow with offshore applications[C] Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, Halkidiki, Greece, 2005.
  • 7LEE D, KIM M, KWON S, et al. A parametric sensitivity study on LNG tank sloshing loads by numerical simulations[J]. Ocean Engineering, 2007, 34(1): 3-9.
  • 8LOOTS E, BUCHNER B, PASTOOR W, et al. The numerical simulation of LNG sloshing with an improved volume of fluid method[C]. Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, Canada, 2004.
  • 9邹志利,邱大洪,王永学.VOF方法模拟波浪槽中二维非线性波[J].水动力学研究与进展(A辑),1996,11(1):93-103. 被引量:31
  • 10朱仁庆,吴有生.液舱内流体晃荡特性数值研究[J].中国造船,2002,43(2):15-31. 被引量:36

二级参考文献77

共引文献132

同被引文献85

  • 1崔岩,吴卫,龚凯,刘桦.二维矩形水槽晃荡过程的SPH方法模拟[J].水动力学研究与进展(A辑),2008,23(6):618-624. 被引量:21
  • 2蔡荣泉,陈凤明,冯学梅.使用Fluent软件的螺旋桨敞水性能计算分析[J].船舶力学,2006,10(5):41-48. 被引量:37
  • 3端木玉,朱仁庆,陈正云,张照刚.不同液舱结构形式对晃荡的影响分析[J].水动力学研究与进展(A辑),2006,21(6):760-769. 被引量:10
  • 4HU C, KASHIWAGI M, KISHEV Z. Numerical simu- lation of violent sloshing by CIP method[C]. Proc. 19th International Workshop on Water Waves and Floating Bodies, Cortona, Italy, 2004.
  • 5CHEN Y C~ DJIDJELI K, PRICE W G. Numerical simulation of liquid sloshing phenomena in partially filled containers[J]. Computers and Fluids, 2009, 38(4): 830-842.
  • 6KOSHIZUKA S, OKAY. Moving-particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering, 1996, 123(3): 421- 434.
  • 7KOSHIZUKA S, NOBE A, OKAY. Numerical analysis of breaking waves using the moving particle semi- implicit method[J]. International Journal for Numerical Methods in Fluids, 1998, 26(7): 751-769.
  • 8CHIKAZAWA Y, KOSHIZUKA S, OKAY. A particle method for elastic and visco-plastic structures and fluid- structure interactions[J]. Computational Mechanics, 2001, 27(2): 97-106.
  • 9SUEYOSHI M. Numerical simulation of extreme motions of a floating body by MPS method[C]. Ocean '04- MTS/IEEE Techo-Ocean': Bridges across the Oceans, Kobe, Japan, 2004. 566-572.
  • 10GOTOH H, IKARI H, MEMITA T, et al. Lagrangian particle method for simulation of wave overtopping on a vertical seawall[J]. Coastal Engineering Journal, 2005, 47(2-3): 157-181.

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部