期刊文献+

架空导线覆冰实验及模拟 被引量:6

Experiment and simulation of icing on overhead transmission lines
下载PDF
导出
摘要 在小型开式冰风洞中对架空导线覆冰过程进行测试,风洞位于低温环境室中,在不同工况下,每隔1 h测量导线上的冰负荷和冰密度以及观察覆冰类型,覆冰测试时间为6 h,将实验结果与改进后基于热平衡的覆冰模型进行比较及误差分析。研究结果表明:当气流温度从-10℃逐渐升高到-2℃时,覆冰开始为干增长(雾凇),然后逐渐变为湿增长(雨凇),同时冰密度增加;风速增加会导致覆冰量增加,但如果气流中液态水含量比较高,即使是在较低的温度下,覆冰类型也为雨凇;改进的覆冰模型对导线冰负荷的预测与实验结果较吻合。 An experimental investigation of icing on overhead transmission lines was carried out in an open cycle icing wind tunnel located in a climatic chamber.Loads and density of ice were measured and ice type was observed every hour of 6 h duration of icing.Comparisons and error analysis were made between the experimental data and those predicted by improved heat balance model.The results show that as the air temperature gradually increases from ?10 ℃ to ?2 ℃,the icing process starts dry-growing(rime ice) and then changes into wet-growing(glaze ice).With the increase of ice density,the increase of wind speed will result in the growth of the ice loads.But if the liquid water content is high,the icing process is wet-growing even at low temperature.Using the improved icing model,the prediction on the wire ice loads is comparatively consistent with the experimental results.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第9期2860-2864,共5页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(50976030)
关键词 架空导线 覆冰 干增长 湿增长 冰风洞 overhead transmission lines icing dry growth wet growth icing wind tunnel
  • 相关文献

参考文献13

  • 1Laforte J L, Allaire M A, Laflamme J. State-of-the-art on power line de-icing[J]. Atmospheric Research, 1998, 46: 143-158.
  • 2Zsolt P, Masoud E Assessment of the current intensity for preventing ice accretion on overhead conductors[J]. IEEE Transactions on Power Delivery, 2007, 22(1): 565-574.
  • 3Maurice H, Christian L, Josee C. Combined models for glaze ice accretion and de-icing of current-carrying electrical conductors[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1611-1616.
  • 4Zsolt P. Modeling and simulation of the icing process on a current-carrying conductor[D]. Quebec: University of Quebec. CIGELE, 2006: 125-131.
  • 5Thorsteins E, Ellasson A J. Ice load measurements in test spans in Iceland-statistical analysis of data[C]//Proceedings of the 8th International Workshop on Atmospheric Icing of Structures (IWAIS 1998). Reykjavik, 1998: 285-289.
  • 6Mcclure G, Johns K C, Knoll E Lessons from the ice storm of 1998: Improving the structural features of hydro-quebec's power grid[C]//I'roceedings of the 10th International Workshop on Atmospheric Icing of Structures. Bmo, 1998: 380-385.
  • 7Makkonen L. Models for the growth of rime, glaze, icicles and wet snow on structures[J]. The Royal Society, 2000, 358: 2913-2939.
  • 8Makkonen L. Modeling of ice accretion on wires[J]. Journal of Climate and Applied Meteorology, 1984, 23: 929-939.
  • 9Makkonen L. Heat transfer and icing of a rough cylinder[J]. Cold Regions Science and Technology, 1985, 10: 105-116.
  • 10Makkonen L. Estimating intensity of atmospheric ice accretion on stationary structures[J]. Journal of Applied Meteorology, 1981, 20: 595-600.

二级参考文献2

  • 1王守礼,云南高海拔地区电线覆冰问题研究,1993年
  • 2赵学端,粘性流体力学,1983年,73页

共引文献105

同被引文献64

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部