期刊文献+

超声速圆盘空化器超空泡流动数值计算方法 被引量:2

Numerical Method for Supercavitating Flow over Disk Cavitator of Underwater Supersonic Projectile
下载PDF
导出
摘要 以超空泡射弹为研究背景,为分析在超声速条件下水的压缩性对圆盘空化器超空泡流场的影响,基于理想可压缩流体势流理论,提出了一套有限体积数值计算方法.采用可压缩流体满足的连续性方程和Tait状态方程,结合Riabouchinsky超空泡闭合模式,提出了针对超空泡流场反问题的一种求解方法.根据超空泡表面不可穿透条件,设计了一种新的超空泡外形迭代方式.在解决超声速圆盘空化器超空泡流场计算问题的基础上,分析了压缩性对超空泡形态和阻力系数的影响.在超声速条件下(马赫数为1.0~1.2),流体压缩性将导致超空泡前后略微不对称,前端比尾端截面更窄,空泡最大截面略微向后移;在相同空泡数下,随着马赫数的增加,空泡长细比逐渐增加,压差阻力系数也不断增加.计算结果与经验公式及有关文献结果吻合较好. To deal with the effect of compressibility on the supersonic supercavitating projectile,a finite volume method was presented based on the ideal compressible potential flow.A solution for the inverse problem of supercavitating flow was proposed using continuity equation and Tait state equation combining with Riabouchinsky closure model.A new iterative scheme about supercavity shape was designed according to the impenetrable condition.The compressibility effect on the supercavity shape and drag coefficient was analyzed on the basis of solving supersonic supercavitating flow over disk cavitator.Under the supersonic condition(Mach number is between 1.0 and 1.2),the fluid compressibility will make the supercavitation a slight asymmetry.The front section is narrower than the end of the section and the maximum supercavity section is slightly moved backward.The supercavity slenderness and pressure drag coefficient will raise with the increase of Mach number at constant cavitation number.The computational results are agree well with other result.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第10期1435-1439,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(10772196) 海军工程大学自然科学基金(HGDJJ08003)
关键词 超声速 射弹 超空泡 有限体积法 势流 流体力学 supersonic projectile supercavity finite volume method potential flow fluid dynamics
  • 相关文献

参考文献15

  • 1Kirschner I N. Results of selected experiments involving supercavitating flows[C]//Supercavitating Flows. Brussels Belgium: NATO, 2002: 343-356.
  • 2孟庆昌,张志宏,顾建农,刘巨斌.超空泡射弹尾拍分析与计算[J].爆炸与冲击,2009,29(1):56-60. 被引量:31
  • 3Vlasenko Y D. Experimental investigation of super- cavitation flow regimes at subsonic and transonic speeds[EB/OL]//(2005-06-15)[2007-09-15] http:// flow. me. es. osaka-u. ac. jp/Cav2003/index. html.
  • 4John Hyde. USB Design by Example:a practical guide to building IO device[M]. Wesley, 1999.
  • 5顾建农,张志宏,范武杰.旋转弹丸入水侵彻规律[J].爆炸与冲击,2005,25(4):341-349. 被引量:39
  • 6Lindau J W, Venkateswaran S, Kunz R F, et al. Computation of compressible multiphase flows[C]//41st Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA: AIAA, 2003: AIAA 2003-1288.
  • 7Kunz R F. Fully coupled, 6-DOF to URANS, model- ing of cavitating flows around a supercavitating vehi- cIe[EB/OL]. (2005-06-15) [2007-09-15]. http:// flow. me. es. osaka-u, ac. jp/Cav 2003/index. html.
  • 8Kunz R F, Lindau J W, Billet M L, et al. Multiphase CFD modeling of developed and supercavitating flows[C]//Supercavitating Flows. Brussels Belgium:NATO, 2002: 269-312.
  • 9易文俊,王中原,熊天红,周卫平,钱吉胜.水下射弹典型空化器的超空泡形态特性分析[J].弹道学报,2008,20(2):103-106. 被引量:13
  • 10冷海军,鲁传敬.轴对称体的局部空泡流研究[J].上海交通大学学报,2002,36(3):395-398. 被引量:6

二级参考文献20

  • 1张志宏,顾建农,范武杰,李甲连.旋转弹体高速入水水中弹道的模拟方法[J].海军工程大学学报,2000,12(6):1-5. 被引量:6
  • 2顾建农,张志宏,郑学龄,金连宝.弹体入水弹道研究综述[J].海军工程大学学报,2000,12(1):18-23. 被引量:20
  • 3顾建农,张志宏,范武杰.旋转弹丸入水侵彻规律[J].爆炸与冲击,2005,25(4):341-349. 被引量:39
  • 4孟庆昌,张志宏,刘巨斌,顾建农.水下高速航行体超空泡流动研究进展[J].船海工程,2006,35(6):26-29. 被引量:14
  • 5汤福坤 何友声.空泡流理论[M].上海:上海交通大学出版社,1986..
  • 6蔡悦彬.无粘流体中瞬态泡的成长与溃灭[M].上海:上海交通大学工程力学系,1995..
  • 7Kulkarni S S, Pratap R. Studies on the dynamics of a supercavitating projectile[J].Applied Mathematical Modeling, 2000,24:113-129.
  • 8孟庆昌.超空泡射弹流动特性及水中弹道初步研究[D].武汉:海军工程大学,2006.
  • 9Kane T R, Levision D A. Dynamics: Theory and applieations[M]. New York: McGraw-Hill, 1985:16-28.
  • 10Garabedian P R. Calculation of axially symmetric cavities and jets[J].Pacific Journal of Mathematics, 1956(4): 611-684.

共引文献82

同被引文献32

  • 1袁绪龙,张宇文,杨武刚.高速超空化航行体典型空化器多相流CFD分析[J].弹箭与制导学报,2005,25(1):53-55. 被引量:31
  • 2隗喜斌,王聪,荣吉利,张嘉钟,杨洪澜,张学伟.锥体空化器非定常超空泡形态分析[J].兵工学报,2007,28(7):863-866. 被引量:6
  • 3Kirschner I N. Results of selected experiments invol- ving supercavitating flows[C]//The Research and Technology Organisation of NATO Supercavitating Flows(RTO EN-010/AVT-058). Ottawa: St Joseph Corporation Company, 2002: 1501-1514.
  • 4Serebryakov V V, Kirschner I N, Schnerr G H. High speed motion in water with supercavitation for sub-, trans-, supersonic Mach numbers[C]// Seventh International Symposium on Cavitation (CAV2009). New York: Curran Associates Inc, 2011: 219-236.
  • 5Vasin A D. Supercavitating flows at supersonic speed in compressible water[C] // High Speed Body Motion in Water ( AGARD-R827 ). Hull: Communication Group Inc, 1998: 2101-2110.
  • 6Vasin A D. Supercavities in compressible fluid[C]// The Research and Technology Organisation of NATO Supercavitating Flows ( RTO EN-010/AVT-058 ). Ottawa: St Joseph Corporation Company, 2002:1601-1629.
  • 7Serebryakov V V. Some problems of the supercavita- tion theory for sub or supersonic motion in water [C]//High Speed Body Motion in Water (AGARDR- 827). Hull: Communication Group Inc, 1998: 2301- 2320.
  • 8Johansen S T, Wu J, Shyy W. Filter-based unsteady RANS com- putations [ J ]. International Journal of Heat and Fluid Flow, 2004, 25(1): 10-21.
  • 9Boisson N, Malin M R. Numerical prediction of two-phase flow in bubble columns[ J]. International Journal for Numerical Methods in Fluids, 1996, 23 (12) : 1289 - 1310.
  • 10Chahed J, Roig V, Masbernat L. Eulerian-Eulerian two-fluidmodel for turbulent gas-liquid bubbly flows[ J]. InternationalJour- nal of Muhiphase Flow, 2003, 29 ( 1 ) : 23 - 49.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部