期刊文献+

无显式表达小波在不同尺度下的离散生成算法及幅频特性 被引量:5

Discrete generation algorithm and amplitude-frequency property of wavelet without analytic expression in various scales
下载PDF
导出
摘要 为了获得无显式表达小波在不同尺度上的幅频特性,必须先解决它在时域各尺度上的离散生成。分析了原有的一个生成算法存在的问题,进而基于多分辨分析理论,提出了一种新的离散生成算法,利用小波低通滤波器系数通过迭代可得到不同尺度上的尺度和小波函数,由此研究了Daubechies2~10号小波在5个尺度上的幅频特性,得到的结果直观地显示了此类小波在不同尺度间存在较大频带重叠,其中D2~D4号小波的频带从第3个尺度开始还存在旁瓣,但在D9~D10号小波中旁瓣基本消失,频带重叠程度也相对减少。通过信号处理实例证实了这种幅频特性的准确性。 To get the amplitude-frequency property of wavelet without analytic expression in the various scales,the discrete generation of wavelet in these scales in time domain should be solved firstly.The defect of one previous generation algorithm being pointed out and analyzed,a new algorithm is proposed based on multiresolution analysis theory,and the scale and wavelet functions in the various scales can be got by this new one using wavelet low pass filter coefficients.The amplitude-frequency property of No.2~10 Daubechies wavelets in the 5 scales is obtained by this algorithm,the results show directly that for these wavelets there are big overlaps among their frequency bands of the various scales,and furthermore for No.2-4 Daubechies wavelets there are some side segments in their frequency bands beginning from the third scale,while for No.9-10 Daubechies wavelets,the side segments disappear and their frequency overlap will also be certain reduced.Signal processing examples are presented to verify the accuracy of this kind of amplitude-frequency property.
作者 赵学智 叶邦彦 陈统坚 ZHAO Xue—zhi;YE Bang—yan;CHEN Tong-jian(School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,China)
出处 《振动工程学报》 EI CSCD 北大核心 2011年第5期546-554,共9页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(50875086,50305005) 广州市科技计划资助项目(2008J1-C101)
关键词 小波分析 小波函数 尺度函数 离散生成 幅频特性 wavelet analysis wavelet function scale function discrete generation amplitude-frequency property
  • 相关文献

参考文献12

  • 1Kovvali N, Lin W, Carin L. Order of accuracy analysis for multiresolution time-domain using Daubechies bases [J]. Microwave and Optical Technology Letters, 2005,45(4) :290-293.
  • 2Diaz L A, Martin M T, Vampa V. Daubechies wavelet beam and plate finite elements[J]. Finite Elements in Analysis and Design, 2009,45 (3) : 200-209.
  • 3Khare A, Khare M, Jeong Y, et al. Despeckling of medical ultrasound images using Daubechies complex wavelet transform [J]. Signal Processing, 2010, 90 (2) : 428-439.
  • 4Wu Jianda, Liu Chiuhong. Investigation of engine fault diagnosis using discrete wavelet transform and neural network [J]. Expert Systems with Applications, 2008,35(3):1 200-1 213.
  • 5Saravanan N, Ramachandran K I. Fault diagnosis of spur bevel gear box using discrete wavelet features and decision tree classification[J]. Expert Systems with Applications, 2009,36 (5) : 9 564-9 573.
  • 6Rafiee J, Tse P W. Use of autocorrelation of wavelet coefficients for fault diagnosis [J]. Mechanical Systems and Signal Processing, 2009, 23(5): 1 554-1 572.
  • 7Gketsis Z E, Zervakis M E, Stavrakakis G. Detection and classification of winding faults in windmill generators using wavelet transform and ANN [J]. Electric Power Systems Research, 2009, 79 (11): 1 483-1 494.
  • 8林伟国,叶东,赵勇,陈刚,车仁生.不同时间尺度下小波函数的离散化生成算法[J].哈尔滨工业大学学报,1998,30(2):57-60. 被引量:1
  • 9Mallat S. Multiresolution approximations and wavelet orthonomal bases of L^2 (R)[J]. Transactions of American Mathematical Society, 1989, 315 (1) : 68-87.
  • 10赵学智,陈统坚,叶邦彦,彭永红.内积型和卷积型小波变换对信号处理效果的研究[J].机械工程学报,2004,40(3):55-60. 被引量:14

二级参考文献19

  • 1赵学智,陈文戈,叶邦彦.空调电机振动噪声的概率分布密度与假设检验[J].中国电机工程学报,2004,24(6):122-126. 被引量:13
  • 2马华,张晓清,张鹏鸽.一种基于线性同余算法的伪随机数产生器[J].纯粹数学与应用数学,2005,21(3):206-209. 被引量:17
  • 3甘春标.高斯白噪声激励下拟可积哈密顿系统的可靠性[J].振动与冲击,2006,25(2):145-146. 被引量:5
  • 4罗启彬,张健.一种新的混沌伪随机序列生成方式[J].电子与信息学报,2006,28(7):1262-1265. 被引量:34
  • 5秦前清 杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1995,第二章.32.
  • 6Deng L Y, Guo R, Lin D K, et al. Improving random number generators in the Monte Carlo simulations via twisting and combining [ J ]. Computer Physics Communications, 2008, 178(6) : 401 -408.
  • 7Cheung R C, Lee D U, I,uk W, et al. Hardware generation of arbitrary random number distributions from uniform distributions via the inversion method [ J ]. IEEE Transactions on Very Large Scale Integration (VLS1) System, 2007, 15(8) : 952 - 962.
  • 8Golic J D. New methods for digital generation and postprocessing of random data [ J ]. IEEE Transactions on Computers, 2006, 55 (10) : 1217 - 1229.
  • 9Carr J R, Simple random number generation[J]. Computers and Geosciences, 2003, 29(10) : 1269 - 1275.
  • 10Thomas D B, Luk W, Leong P H, et al. Gaussian random number generators[J]. ACM Computing Surveys, 2007, 39 (4):11 -12.

共引文献15

同被引文献48

  • 1宋乾坤,柳斌.矩阵奇异值的两个不等式的推广[J].四川理工学院学报(社会科学版),1994,12(4):78-80. 被引量:5
  • 2赵学智,陈统坚,叶邦彦,彭永红.基于参数方程的小波基自适应选择[J].机械工程学报,2004,40(11):123-128. 被引量:9
  • 3段礼祥,张来斌,王朝晖,张东亮.柴油机振动信号的小波包奇异值降噪[J].中国石油大学学报(自然科学版),2006,30(1):93-97. 被引量:22
  • 4LUO Ming-Je.APPLICATION OF WAVELET TRANSFORM ON DIAGNOSIS AND PREDICTION OF MILLING CHATTER[J].Chinese Journal of Mechanical Engineering,2007,20(3):67-70. 被引量:6
  • 5SELVAN S,RAMAKRISHNAN S.SVD-based modelingfor image texture classification using wavelettransformation[J].IEEE Transactions on Image Processing,2007,16(11):2688-2696.
  • 6BRENNER M J.Non-stationary dynamic data analysiswith wavelet-SVD filtering[J].Mechanical System andSignal Processing,2003,17(4):765-786.
  • 7XIE Hongbo,ZHENG Yongping,GUO Jingyi.Classification of the mechanomyogram signal using awavelet packet transform and singular valuedecomposition for multifunction prosthesis control[J].Physiological Measurement,2009,30(5):441-457.
  • 8VIVEKANANDA B K,INDRANIL S,ABHIJIT D.Anadaptive audio watermarking based on the singular valuedecomposition in the wavelet domain[J].Digital SignalProcessing,2010,20(6):1547-1558.
  • 9HASAN D,CAGRI O,GHOLAMREZA A.Satelliteimage contrast enhancement using discrete wavelettransform and singular value decomposition[J].IEEEGeoscience and Remote Sensing Letters,2010,7(2):333-337.
  • 10LEHTOLA L,KARSIKAS M,KOSKINEN M,et al.Effects of noise and filtering on SVD-basedmorphological parameters of the T wave in the ECG[J].Journal of Medical Engineering&Technology,2008,32(5):400-407.

引证文献5

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部