期刊文献+

数控车削中成本最低的切削参数优化方法 被引量:21

Optimization approach of cutting parameters for minimizing production cost in CNC turnings
下载PDF
导出
摘要 为选择合理的数控加工切削参数,以最小化加工成本,提出了基于边缘分布估计算法和车削次数枚举方法相结合的新型优化算法。在大量的加工约束条件下,同时优化粗、精两个车削加工阶段的切削参数,进而引入车削成本的理论下限,利用该理论下限不仅可以提高算法的搜索效率,还能评价优化结果。计算机模拟表明,该算法能够找到更优的车削参数组合,从而进一步节约加工成本,且具有更高的运算效率。 To select reasonable cutting parameters of Computer Numerical Control(CNC) machining so as to minimize production cost,a novel optimization approach combined Univariate Marginal Distribution Algorithm(UMDA) with Pass Enumerating method(PE) was proposed.Under lots of machining constraints,the cutting parameters of both rough machining and finish machining were optimized simultaneously.Furthermore,the theoretical lower bounds on Unit production Cost(UC) were introduced,which could be used not only to improve the efficiency of the proposed approach,but also evaluate the optimization results.Computer simulation showed that the proposed UMDA-PE approach could achieve more optimal solution than other approaches proposed previously to reduce UC,and improve the computational efficiency as well.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2011年第10期2144-2149,共6页 Computer Integrated Manufacturing Systems
基金 国家863计划资助项目(2008AA042501) 国家自然科学基金资助项目(50905150) 福建省自然科学基金资助项目(2010J05137 2011J01323) 福建省教育厅资助项目(JA11156)~~
关键词 加工参数优化 数控车削 分布估计算法 道次枚举 加工成本 machining parameter optimization computer numerical control turning estimation of distribution algorithms pass enumerating processing cost
  • 相关文献

参考文献21

  • 1MUKHERJEE I, RAY P. A review of optimization techniques in metal cutting processes[J]. Computers & Industrial Engineering, 2006,50 (1/2) : 15-34.
  • 2CHANDRASEKARAN M, MURALIDHAR M, KRISHNA C, et al. Application of soft computing techniques in machining performance prediction and optimization: a literature review[J]. International Journal of Advanced Manufacturing Technology, 2010,46 (5/6/7/8): 445-464.
  • 3CHEN M, TSAI D. A simulated annealing approach for optimization of multi-pass turning operations [J]. International Journal of Production Research, 1996,34 (10) : 2803-2825.
  • 4ONWUBOLU G, KUMALO T. Optimization of multipass turning operations with genetic algorithms[J]. International Journal of Production Research,2001,39(16) :3727-3745.
  • 5CHEN M, CHEN K. Optimization of muhipass turning operations with genetic algorithms: a note[J]. International Journal of Production Research, 2003,41 (14) : 3385-3388.
  • 6VIJAYAKUMAR K, PRABHAHARAN G, ASOKAN P, et al. Optimization of multi-pass turning operations using ant colony system[J]. International Journal of Machine Tools and Manufacture, 2003,43 (15):1633-1639.
  • 7WANG Y. A note on optimization of multi-pass turning operations using ant colony system[J]. International Journal of Machine Tools and Manufacture,2007,47(12-13):2057-2059.
  • 8SANKAR R, ASOKAN P, SARAVANAN R, et al. Selection of machining parameters for constrained machining problem using evolutionary eomputation[J]. International Journal of Advanced Manufacturing Technology,2007,32(9/10) :892-901.
  • 9SRINIVAS J, GIRI R, YANG S. Optimization of multi-pass turning using particle swarm intelligence[J]. International Journal of Advanced Manufacturing Technology, 2009,40 (1/2):56-66.
  • 10YILDIZ A. A novel particle swarm optimization approach for product design and manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2009, 40 ( 5/6 ) : 617-628.

二级参考文献12

  • 1Mukherjee I, Ray P K. A Review of Optimization Techniques in Metal Cutting Processes[J]. Corn puters & Industrial Engineering, 2006, 50(1/2):15 -34.
  • 2Vijayakumar K, Prabhaharan G, Asokan P, et al. Optimization of Multi pass Turning Operations Using Ant Colony System[J]. International Journal of Machine Tools & Manufacture, 2003, 43 (15):1633-1639.
  • 3Wang Y C. A Note on ' Optimization of Multi-- pass Turning Operations Using Ant Colony System' [J]. International Journal of Machine Tools & Manufac ture, 2007, 47(12/13):2057-2059.
  • 4Srinivas J, Girl R,Yang S H. Optimization of Multi pass Turning Using Particle Swarm Intelligence [J]. International Journal of Advanced Manufacturing Technology, 2009, 40(1/2) :56-66.
  • 5Onwubolu G C, Kumalo T. Optimization of Multipass Turning Operations with Genetic Algorithms [J].International Journal of Production Research. 2001, 39(16) :3727-3745.
  • 6Chen M C, Chen K Y. Optimization of Multipass Turning Operations with Genetic Algorithms: a Note[J]. International Journal of Production Research, 2003, 41(14) :3385-3388.
  • 7Sankar R S, Asokan P, Saravanan R, et al. Selection of Machining Parameters for Constrained Ma chining Problem Using Evolutionary Computation [J]. International Journal of Advanced Manufacturing Technology, 2007, 32(9/10) :892-901.
  • 8Chen M C,Tsai D M. A Simulated Annealing Ap proach for Oplimization of Multi- pass Turning Operations[J]. International Journal of Production Research, 1996, 34(10) :2803-2825.
  • 9Muhlenbein H, Paass G. From Recombination of Genes to the Estimation of Distribution Part 1, Binary Parameter [C]//4th International Conference on Parallel Problem Solving from Nature PPSN IV. Berlin: Springer-- Verlag, 1996 : 178-187.
  • 10Muhlenbein, H. The Equation for Response to Selection and Its Use for Prediction[J]. Evolutionary Computation, 1997, 5(3) :303-346.

共引文献7

同被引文献190

引证文献21

二级引证文献210

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部