期刊文献+

海洋中溶解甲烷的原位检测技术研究进展 被引量:13

The Development of in Situ Sensors for Dissolved Methane Measurement in the Sea
原文传递
导出
摘要 海水中溶解甲烷气体不但对全球变暖和海洋环境变化有着重要影响,而且也是发现渗漏型天然气水合物赋存区的依据之一,海水溶解甲烷原位监测的新技术和新方法是获取海水甲烷通量变化过程的主要手段。原位甲烷传感器具有原位、实时、便于多时空尺度定量观测等特点,在海洋环境变化和全球气候变化研究,以及海底资源开发利用中具有广泛的应用前景。介绍基于膜脱气、基于光学检测技术和生物传感机理的溶解甲烷传感器的检测原理和特点,探讨原位甲烷传感器研究发展前景,新型膜材料的研发,基于光学检测技术与等离子体共振、表面增强拉曼散射等方法相结合的检测手段将是今后原位甲烷传感器发展的重要方向。 Dissolved methane in sea water not only has a great impact on global warming and the marine environment,but also it is one of the useful methodologies to recognize gas hydrate deposit.It is required to develop novel in situ monitoring technology to observe and to understand the process of methane flux.The advantage of in situ sensors is that it can be deployed underwater to obtain high spatial and temporal resolution information in real time,and that it makes great contribution in the research of marine environment and global climate,as well as in finding marine gas hydrate.This paper overviews the principles and characteristics of in situ methane sensors for marine application and the prospects of the in-situ methane sensor are discussed.It is indicated that the development of new membrane materials and the detection method by combination of optical detection technology with plasma resonance and surface-enhanced Raman scattering method could play an important role for the new generation of the in-situ methane sensor in the future.
出处 《地球科学进展》 CAS CSCD 北大核心 2011年第10期1030-1037,共8页 Advances in Earth Science
基金 国家高技术研究发展计划项目"深海海底成矿异常流动注射分析仪(FIA)在线探测技术"(编号:2007AA09Z212)和"深海海底边界层原位监测技术(编号:2009AA09Z201) 中海油能源发展股份有限公司北京分公司研究项目"冰型自动图像识别系统研究"(编号:JDBF-XXJS-08-ZC-066)资助
关键词 海水溶解甲烷 原位检测 甲烷传感器 Marine dissolved methane In-situ measurement Methane sensor
  • 相关文献

参考文献34

  • 1方银霞,黎明碧,初凤友.海底天然气水合物中甲烷逸出对全球气候的影响[J].地球物理学进展,2004,19(2):286-290. 被引量:9
  • 2Valentine D L, Kastiner M, Wardlaw G D, et al. Biogeochemical investigations of marine methane seeps, Hydrate Ridge, Oregon[J]. Journal of Geophysical Research, 2005, 110: 1-17.
  • 3Amouroux D, Roberts G, Rapsomanikis S, et al. Biogenic gas(CH4, N2O, DMS) emission to the atmosphere from near-shore of the North-Western Black Sea[J]. Estuarine, Coastal & Shelf Science, 2002, 54(3): 575-587.
  • 4Reeburgh W S. Global methane biogeochemistry[J]. Treatise on Geochemistry, 2003, 4:1-25.
  • 5周怀阳,吴自军,彭晓彤,蒋磊,唐松,姚会强.大西洋洋中脊Logatchev热液场水柱中甲烷羽状流的探测[J].科学通报,2007,52(9):1058-1063. 被引量:5
  • 6Bernardo P, Drioli E, Golemme G. Membrane gas separation: A review state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(10):4 638-4 663.
  • 7Aleksanyan M. Methane sensor based on SnO2/In2O3TiO2 nanostrucure[J]. Journal of Contemporary Physics, 2010, 45(2):77-80.
  • 8Garcial M L, Masson M. Environmental and geologic application of solid-state methane sensors[J]. Environmental Geology, 2004, 46(8):1 059-1 063.
  • 9Newman K, Cormier M, Weissel J, et al. Active methane venting observed at giant pockmarks along the U.S. mid-Atlantic shelf break[J].Earth and Planetary Science Letters, 2008, 267(1/2): 341-352.
  • 10Krabbenhoeft A, Netzeband G, Bialas J, et al.Edisodic methane concentrations at seep sites on the upper slope Opouawe Bank, Southern Hikurangi Margin, New Zealand[J]. Marine Geology, 2010,272(1/4): 71-78.

二级参考文献52

  • 1陈汉宗,周蒂.天然气水合物与全球变化研究[J].地球科学进展,1997,12(1):37-42. 被引量:28
  • 2[1]MacDonald G J. The long-term impacts on increasing atmospheric carbon dioxide levels [ M ]. Ballinger, Cambridge, MA. 1982.
  • 3[2]Chamberlain J W, Foley H M, MacDonald GJ, Ruderman M A.Climate effects of minor atmospheric constituents [ A ]. In: Clark W C (Ed.), Carbon Dioxide Review, Oxford Univ Press New York, 1982:255 ~ 277.
  • 4[3]Kvenvolden K A. Methane hydrates and global climate [ J ]. Glob Biochem Cycl. 1988:2: 221 ~ 229.
  • 5[4]Hovland M, Judd A G. Seabed pockmarks and seepages: impact on geology, biology and the marine environment[ M]. Graham and Trotman, London, 1988.
  • 6[5]Judd A, Davies G, Wilson J, Holmes R, Baron G, Bryden Ⅰ.Contributions of atmospheric methane by natural seepages on the UK continental shelf[ J ]. Mar Geol, 1997,140:427 ~ 455.
  • 7[15]Dickens G R, ONeil J R, Rea D K, Owen R M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene [ J ]. Paleoceanography , 1995,10:965 ~971.
  • 8[16]Katz M E, Pak D K, Dickens G R. The source and fate of massive carbon input during the latest Paleocene thermal maximum[J]. Science, 1999, 286 (5444) :1531 ~ 1533
  • 9[17]Dickens G R, Castillo M M, Walker J C G. A blast of gas in the latest paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate[ J]. Geology , 1997,25:259 ~262.
  • 10[18]Zachos J, Pagani M, Sloan L, Thomas E, Billups K, Trends rhythms and aberrations in global climate 65 Ma to present [ J ].Science, 2001:686 ~693.

共引文献12

同被引文献220

引证文献13

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部