期刊文献+

格构式框架护坡地震动位移模式的振动台试验研究 被引量:27

SHAKING TABLE MODEL TEST STUDY OF SEISMIC DISPLACEMENT MODE OF SLOPE WITH ANCHOR LATTICE FRAME STRUCTURE
下载PDF
导出
摘要 通过1个比尺1:8的边坡大型振动台模型试验,研究锚杆格构式框架护坡在地震作用下的位移模式及其变化特性。模型试验以汶川波作为设计输入地震波,采用水平(X)向、竖直(Z)向和水平竖直(XZ)双向等3种激振方式。研究结果表明:(1)X向单向激振时,支挡结构的动位移模式为:当激振加速度峰值AXmax≤0.4 g时,离开土体向外侧平移;当AXmax=0.6 g时,绕支挡结构的下端向土体方向或边坡下方转动;当AXmax≥0.8 g时,挤向边坡土体方向移动,同时向边坡下方移动与绕支挡结构下端向土体方向转动的耦合。(2)Z向单向激振时,支挡结构的动位移模式为:当AZmax≤0.267 g时,离开土体向外侧移动,同时发生向边坡下方移动与绕结构下端向土体方向转动的耦合;当AZmax≥0.400 g时,挤向边坡土体方向平移与绕结构下端向土体方向转动的耦合。(3)XZ双向激振时,支挡结构的动位移模式为:离开土体向外侧平移,与绕结构下端向土体方向或边坡下方转动的耦合。 A slope model with the geometric scale of 1∶8 was designed and a large-scale shaking table model test was performed to study the seismic displacement mode of anchor lattice frame structure and its characteristics under Wenchuan earthquake loading with three excitation directions including X,Z,and XZ direction respectively.The results show that:(1) Under X direction excitation,the seismic displacement mode of the proposed retaining structure is the translation from filling soil mass at the peak exciting acceleration AXmax≤0.4 g,the rotation inward or lower slope about the lower of retaining structure at AXmax = 0.6 g,and the coupling of the translation to filling soil mass and the rotation inward about the lower of retaining structure at AXmax≥0.8 g.(2) Under Z direction excitation,the seismic displacement mode of the proposed retaining structure is the coupling of the translation from filling soil mass and the rotation inward about the lower of retaining structure at AZmax≤0.267 g,the coupling of the translation to filling soil mass and the rotation inward about the lower of retaining structure at AZmax≥0.400 g.(3) Under XZ direction excitation,the seismic displacement mode of the proposed retaining structure is the coupling of the translation from filling soil mass and the rotation inward about the lower of retaining structure.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2011年第10期2076-2083,共8页 Chinese Journal of Rock Mechanics and Engineering
基金 铁道部科技研究开发计划课题(2008G028-D-4) 中南林业科技大学引进高层次人才科研启动基金项目(104-0094)
关键词 土力学 格构式框架护坡 地震动位移模式 大型振动台模型试验 地震永久位移 soil mechanics slope with anchor lattice frame structure seismic displacement mode large-scale shaking table model test seismic permanent displacement
  • 相关文献

参考文献12

  • 1张军,王贻荪.确定挡土墙主动土压力分布的薄层分析法[J].湖南大学学报(自然科学版),1998,25(S1):151-157. 被引量:20
  • 2MYLONAKIS G, KLOUKINAS P, PAPANTONOPOULOS C. An alternative to the Mononobc-Okabe equations for seismic earth pressures[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(10): 957 - 969.
  • 3陈学良,陶夏新,陈宪麦,周晓岩,袁一凡.重力挡土墙地震反应研究评述[J].自然灾害学报,2006,15(3):139-146. 被引量:12
  • 4TINAWI R, LEGER P, LECLERC M, et al. Seismic safety of gravity dams., from shake table experiments to numerical analyses[J]. Journal of Structural Engineering, ASCE, 2000, 126(4): 518 - 529.
  • 5L1N M L, WANG K L. Seismic slope behavior in a large-scale shaking table model test[J]. Engineering Geology, 2006, 86(2/3): 118 - 133.
  • 6PITILAKIS D, DIETZ M, WOOD D M, et al. Numerical simulation of dynamic soil-structure interaction in shaking table testing[J]. Soil Dynamics and Earthquake Engineering, 2008, 28(6): 453 - 467.
  • 7ANASTASOPOULOS I, GEORGARAKOS T, GEORGIANNOU V, et al. Seismic performance of bar-mat reinforced-soil retaining wall: Shaking table testing versus numerical analysis with modified kinematic hardening constitutive model[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10): 1 089 - 1 105.
  • 8LEE K Z Z, CHANG N Y, KO H Y. Numerical simulation of geosynthetic-reinforced soil walls under seismic shaking[J]. Geotextiles and Geomembranes, 2010, 28(4): 317-334.
  • 9文畅平,杨果林.地震作用下挡土墙位移模式的振动台试验研究[J].岩石力学与工程学报,2011,30(7):1502-1512. 被引量:21
  • 10IAI S. Similitude for shaking table tests on soil-structure-fluid model in 1 g gravitational field[J]. Soils and Foundations, 1989, 29(1): 105 - 118.

二级参考文献24

  • 1李涛.地震主动土压力简化计算公式[J].铁道工程学报,1996,13(1):103-105. 被引量:4
  • 2陈学良,陶夏新,陈宪麦,周晓岩,袁一凡.重力挡土墙地震反应研究评述[J].自然灾害学报,2006,15(3):139-146. 被引量:12
  • 3中华人民共和国国家标准编写组.GB50111-2006铁路工程抗震设计规范[S].北京:中国计划出版社,2006.
  • 4BANG S. Active earth pressure behind retaining walls[J]. Journal of Geotechnical Engineering Division, 1985, 111(3): 407-412.
  • 5FANG Y S, ISHIBASHI I. Static earth pressures with various wall movements[J]. Journal of Geotechnical Engineering Division, 1986, 112(3): 317-333.
  • 6CHANG M F. Lateral earth pressures behind rotating walls[J]. Canadian Geotechnical Journal, 1997, 34(4): 498-509.
  • 7LING H I. Recent applications of sliding block theory to geotechnical design[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(3): 189 - 197.
  • 8CALTABIANO S, CASCONE E, MAUGERI M. Seismic stability of retaining walls with surcharge[J]. Soil Dynamics and Earthquake Engineering, 2000, 20(5/8): 469-476.
  • 9PSARROPOULOS P N, KLONARIS G, GAZETAS G. Seismic earth pressures on rigid and flexible retaining walls[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(7/10): 795- 809.
  • 10MYLONAKIS G, KLOUKINAS P, PAPANTONOPOULOS C. An alternative to the Mononobc-Okabe equations for seismic earth pressures[J]. Soil Dynamics and Earthquake Engineering, 2007 27(10): 957 - 969.

共引文献52

同被引文献177

引证文献27

二级引证文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部