期刊文献+

利用多颜色信息融合的自适应肤色建模 被引量:3

Adaptive skin color modeling based on color information fusion
下载PDF
导出
摘要 客观世界中存在不同的光照、肤色和人种等因素,通常情况下难以建立一个通用的肤色模型进行各种裸露皮肤的检测。研究了一种自适应肤色建模方法,即利用AdaBoost算法检测人脸,通过这些人脸区域进行肤色建模。为了取得较好的肤色建模效果,适当缩小了由AdaBoost算法检测到的人脸区域;利用多颜色空间信息融合技术,即通过选取多个颜色空间的若干颜色分量,计算待检测图像中这些分量的各自SPM(肤色概率图),经过"与"运算融合获得最终检测的肤色区域。该算法不需要考虑光照、肤色和人种等因素,是一种自适应的建模过程。实验表明,该算法可以有效解决绝大多数情况下的彩色图像肤色检测问题。 Due to different illumination,skin color and racial factors in practical world,normally it is hard to establish a general skin model to detect all the bare skin.In this paper,an adaptive skin modeling method is studied,i.e.,faces are detected by means of AdaBoost algorithm,and skin modeling is performed by using these detected face regions.In order to achieve good modeling performance,the detected face regions are properly reduced,and a special information fusion technology "AND"operation is used in multiple color spaces.This algorithm does not need to consider illumination,skin color and racial factors,and is an adaptive skin modeling method.Experiment shows that this method can effectively solve most of skin detection problems in color images.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第30期210-214,223,共6页 Computer Engineering and Applications
基金 国家自然科学基金No.60873089 山东省研究生教育创新计划(No.SDYY08032) 山东省教育科学规划课题重点项目(No.2008ZK0007)~~
关键词 ADABOOST算法 自适应肤色建模 多颜色空间 肤色概率图 信息融合 AdaBoost algorithm adaptive skin color modeling multiple color space skin probability map information fusion
  • 相关文献

参考文献13

二级参考文献291

共引文献200

同被引文献33

  • 1李遨空,张红梅.基于数学形态学的图像处理技术应用研究[J].光盘技术,2007(4):54-55. 被引量:8
  • 2肖梅,韩崇昭.室内视频中基于边缘的运动阴影去除算法[J].模式识别与人工智能,2006,19(5):640-644. 被引量:4
  • 3郭利生,郭立,焦荣惠,郑军.一种基于运动阴影的目标检测算法[J].模式识别与人工智能,2007,20(2):180-184. 被引量:4
  • 4查宇飞,楚瀛,王勋,马时平,毕笃彦.一种基于Boosting判别模型的运动阴影检测方法[J].计算机学报,2007,30(8):1295-1301. 被引量:9
  • 5MARTEL-BRISSON N,ZACCARIN A. Moving cast shadowdetection from a Gaussian mixture shadow model [ C ] //Pro-ceedings of the IEEE Computer Society Conference on Com-puter Vision and Pattern Recognition. San Diego, USA,2005: 643-648.
  • 6WANG Yang, LOE K F,WU Jiankang. A dynamic condi-tional random field model for foreground and shadow seg-mentation [J ]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2006, 28(2) : 279-289.
  • 7PORIKLI F,THOMTON J. Shadow flow: A recursive meth-od to learn moving cast shadows [ C ] //Proceedings of TenthIEEE International Conference on Computer Vision. Beijing,China, 2005: 891-898.
  • 8SALVADOR E,CAVALLARO A, EBRAHIMI T. Castshadow segmentation using invariant color features [ J ].Computer Vision and Image Understanding, 2004, 95(2):238-259.
  • 9KUMAR P, SENGUPTA K,LEE A. A comparative study ofdifferent color spaces for foreground and shadow detectionfor traffic monitoring system [ C ] //Proceedings of the IEEE5th International Conference on Intelligent TransportationSystems. Washington DC, USA,2002: 100-105.
  • 10LEONEA, DISTANTE C. Shadow detection for moving ob-jects based on texture analysis [ J ]. Pattern Recognition,2007,40(4) : 1222-1233.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部