期刊文献+

利用模型选择确定视觉词袋模型中词汇数目 被引量:3

Determine word number of Visual Bag-of-Words model by model selection method
下载PDF
导出
摘要 视觉词袋(Visual Bag-of-Words)模型在图像分类、检索和识别等计算机视觉领域有了广泛的应用,但是视觉词袋模型中词汇数目往往是根据经验确定或者采用有监督的交叉学习选取。提出一种确定视觉词袋模型中词汇数目的无监督方法,利用模型选择的思想来解决问题。使用高斯混合模型描述具有不同词汇数目的视觉词袋,计算各模型贝叶斯信息准则的值,选取贝叶斯信息准则最小值对应的词汇数目。与交叉验证的监督学习在图像分类实验的对比结果说明该方法准确有效。 Visual Bag-of-Words model has been widely used in image classification,retrieval and recognition.However,its word number usually is selected by user experience or determined using the supervised cross-validation scheme.In this paper,an unsupervised method is proposed to infer the word number of Visual Bag-of-Words model(BoW) based on the idea of model selection.Firstly,Gaussian Mixture Models(GMM) are built accounting for BoWs with different word number.Afterwards,Bayesian Information Criterion(BIC) is adopted to select the best model that has the minimum BIC value.Compared with cross-validation approach using image classification,the result demonstrates the effectiveness of the proposed approach.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第31期148-150,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.61005018) 西北工业大学引进高层次人才科研启动费资助项目~~
关键词 视觉词袋模型 模型选择 高斯混合模型 贝叶斯信息准则 Visual Bag-of-Words model selection Gaussian Mixture Mode(lGMM) Bayesian information criterion
  • 相关文献

参考文献13

  • 1Huang J,Kumary S,Mitraz M, et al.Image indexing using color correlograms[J].Computer Vision and Pattern Recognition, 1997: 762-768.
  • 2Manjunathi B, Ma W.Texture features for browsing and retriev- al of image data[J].IEEE Transaction on Pattern Analysis and Machine Intelligence, 1996:837-842.
  • 3Brandt S, Laaksoncn J, Oja E.Statistical shape features for con- tent-based image rctricval[J].Joumal of Mathematical Imaging and Vision,2002:187-198.
  • 4Lowe D.Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004: 91-110.
  • 5David L.Naive(Bayes) at forty:the independence assumption in information retrieva[C]//European Conference on Machine Learn- ing, 1998:4-15.
  • 6Li F, Fergus R, Perona P.A bayesian approach to unsupervised one-shot learning of object categories[C]//1EEE International Conference on Computer Vision,2003:1134-1141.
  • 7Fergus R, Li F,Perona P,et al.Leaming object categories from Google's image search[C]//IEEE International Conference on Computer Vision,2005 : 1816-1823.
  • 8PhiIbin J, Chum O,Isard M,et al.Object retrieval with large vo- cabularies and fast spatial matching[C]//Computer Vision and Pattern Recognition,2007: 1-8.
  • 9UCLA vision lab and the Oxford VGG lab[EB/OL].The VLFeat open source library.http://www.vlfeat.org/index.html.
  • 10Bishop C.Pattern recognition and machine learning[M].New York: Springer, 2006.

同被引文献33

  • 1陆江锋,单春芳,洪小龙,裘正军.基于数字图像的茶叶形状特征提取及不同茶叶鉴别研究[J].茶叶科学,2010,30(6):453-457. 被引量:15
  • 2田波平,孙秋梅,廖庆喜,张国忠.6CZZ-600型针形名优茶做形机及成型工艺优化[J].农业工程学报,2005,21(4):65-68. 被引量:12
  • 3王云,李春华.名优茶氨基酸含量变化规律及其影响因素研究[J].西南农业学报,2006,19(6):1121-1126. 被引量:45
  • 4许晓安,王长庚.报网互动中如何办好电子报[J].新闻战线,2007(7):57-59. 被引量:2
  • 5Vigo D A R,Khanfs,Van D W J,et al.The impact of color on bag-of-words based object recognition[C]//International Conference on Pattern Recognition,2010:1549-1553.
  • 6Deselaers T,Pimenidis L,Nry H.Bag-of-visual-words models for adult image classif-ication and filtering[C]//19th International Conference on Pattern Recognition.Washington,DC:IEEE Computer Society,2008:1-4.
  • 7WU LEI,HOI S C H,YU Nenghai.Semantics preserving bag-of-words models and applications[J].IEEE Transactions on Image Proces sing,2010,19 (7):1908-1920.
  • 8Manuele B,Andrea L,Enrico G.On the use of SIFT features for face authentication[C]//Proceeding of the Conference on Computer Vision and Pattern Recognition Workshop,2006.
  • 9Matthew Brown,David G Lowe.Automatic panoramic image stitching using invariant features[J].International Journal of Computer Vision,2007,74 (1):59-73.
  • 10Chao Zhu,Bichot Charles-Edmond,Liming C-hen.Visual object recognition using DAISY descriptor[C]//IEEE International Conference on Multimedia and Expo,2011:1-6.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部