期刊文献+

一种融合图学习与区域显著性分析的图像检索算法 被引量:17

Combining Graph Learning and Region Saliency Analysis for Content-Based Image Retrieval
下载PDF
导出
摘要 为弥合图像低层视觉特征和高层语义之间的语义鸿沟,改善图像检索的效果,机器学习算法经常被引入到图像检索问题中.通常情况下,机器学习算法是与相关反馈机制相结合,通过用户的交互操作,标定出若干正反例图像,很自然地就可以将图像检索问题转化为模式识别中的分类问题.目前融合区域显著性分析的区域图像检索算法尚没有与机器学习算法相融合.本文结合图像区域显著性分析,并针对用户参与反馈的情况,分别提出了两种图像检索解决方案.其一,在没有用户反馈以及用户只反馈正例图像的情形下,将图像检索问题转化为直推式学习问题(Transductive Learning),改进已有的基于图的半监督学习算法,提出了融合区域显著性分析的层次化图表示(Hierarchi-cal Graph Representation)方式,用以实现标记传播;其二,在用户同时反馈正反例图像的情形下,利用用户反馈得到的正反例图像构建相似性邻接矩阵,通过流形排序算法(Manifold-Ranking)学习出用户感兴趣的查询目标概念并用相应的特征向量集合表示,并据此查询图像库返回用户语义相关的图像集合.实验结果验证了这两种检索策略的有效性. For the image retrieval task which combines machine learning theory with relevance feedback mechanism,this paper focuses on the graph-based semisupervised learning algorithm with application to region-based image retrieval.Different schemes which both incorporate the region saliency into the graph-based semi-supervised learning framework are applied to deal with two types of feedback.Firstly,in the case that no sample or only positive samples are available from the user's feedback,the retrieval task can be resolved via a transductive learning manner,a hierarchical graph model which incorporates region saliency information is constructed and the manifold-ranking algorithm is adopted subsequently for positive label propagation.Secondly,in the case that the user provides both positive and negative samples,the region-level adjacency matrix will be constructed via the feedback samples,and the manifold-ranking algorithm is also adopted here to choose instances which truly represent the user's query semantics.The selected instances are then used to retrieve the relevant samples.The experiments have proved the effectiveness of the proposed method.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第10期2288-2294,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.60972145 61033013 No.61100142) 中央高校基础科研业务费(No.2009JBM024) 中国博士后科学基金(No.201003044) 北京邮电大学智能通信软件与多媒体北京市重点实验室开放课题 北京市教育委员会科技发展计划(No.KM20091147002)
关键词 图像检索 区域显著性 图学习 流形排序 相关反馈 content-based image retrieval region saliency graph learning manifold-ranking relevance feedback
  • 相关文献

参考文献21

  • 1Datta R, Joshi D,Li J,Wang J Z. Image retrieval: ideas,influences, and a'ends of the new age[ J].ACM Computing Surveys, 2008,40(2) : 1 - 60.
  • 2Rui Y, Huang T S, Ortega M,Mehrotra S. Relevance feedback: A power tool for interactive content-based image retrieval[ J]. IEEE Trans on Circuits and Systems for Video Technology, 1998,8(5) :644 - 655.
  • 3吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 4邬俊,鲁明羽,刘闯.基于混合学习框架的SVM反馈算法研究[J].电子学报,2010,38(9):2101-2106. 被引量:5
  • 5Liu Y, Zhang D,Lu G. Region-based image retrieval with high- level semantics using decision tree learning[ J]. Pattern Recog- nition, 2008,41 (8) : 2554 - 2570.
  • 6Zhang C, Chen T. An active learning framework for content- based information retrieval [ J ]. IEEE, Trans on Multimedia, 2002,4(2) :260 - 268.
  • 7Jing,F,Li,M, et al. An efficient and effective region-based im- age relrieval framework [ J]. IEEF Trans on Image Processing, 2004,13(5) :699 - 709.
  • 8Zlaou Z H, Chen K J, et al. Enhancing relevance feedback in image retrieval using unlabeled data[ J] .ACM Tram on Infor- marion Systems, 2006,24(2 ) :219 - 244.
  • 9陈毅松,汪国平,董士海.基于支持向量机的渐进直推式分类学习算法[J].软件学报,2003,14(3):451-460. 被引量:88
  • 10Zhou D, Bousquet 0, Lal T N, Weston J, Scholkopf B. Learn- ing with local and global consistency[ A]. Proc of Advances in Neural Information Processing Systems (NIPS' 03) [ C ]. Vancouver:Curran Associates Inc, 2003.321- 328.

二级参考文献100

  • 1戴声扬,章毓晋.图像检索中的两层描述和非对称区域匹配[J].电子学报,2005,33(4):725-729. 被引量:2
  • 2[1]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 3[2]Stitson MO, Weston JAE, Gammerman A, Vovk V, Vapnik V. Theory of support vector machines. Technical Report, CSD-TR-96-17, Computational Intelligence Group, Royal Holloway: University of London, 1996.
  • 4[3]Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995,20:273~297.
  • 5[4]Vapnik V. Statistical Learning Theory. John Wiley and Sons, 1998.
  • 6[5]Gammerman A, Vapnik V, Vowk V. Learning by transduction. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Wisconsin, 1998. 148~156.
  • 7[6]Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML). San Francisco: Morgan Kaufmann Publishers, 1999. 200~209.
  • 8[7]Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Haussler D, ed. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. Pittsburgh, PA: ACM Press, 1992. 144~152.
  • 9[8]Burges CJC. Simplified support vector decision rules. In: Saitta L, ed. Proceedings of the 13th International Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers, 1996. 71~77.
  • 10[9]Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines. In: Proceedings of the IEEE NNSP'97. Amelia Island, FL, 1997. 276~285.

共引文献142

同被引文献131

引证文献17

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部