期刊文献+

Banach空间中渐近非扩张映象的Reich型均值迭代的强收敛性

Strong Convergence of Reich Mean Iterations for Asymptotically Nonexpansive Mappings in Banach Spaces
下载PDF
导出
摘要 利用粘性逼近法在Hilbert空间以及lp(1<p≤2)等空间中给出了判定渐近非扩张非自射映象的Reich均值迭代强收敛的充要条件,并去掉了最近相关文献中的一些复杂条件. In this paper,the author gives some convergence theorems of the sufficient and necessary conditions in determining the convergence of Reich type mean iteration for asymptotically nonexpansive mapping in Banach spaces,such as Hilbert spaces,and some implicit conditions of recent relative papers are deleted.
作者 王雄瑞
机构地区 宜宾学院数学系
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期40-43,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 宜宾学院自然科学重点项目(2010z03)
关键词 渐近非扩张非自射映象 压缩映象 BANACH压缩映象原理 度规函数 弱连续对偶映象 asymptotically nonexpansive nonself-mapping contractive mapping Banach contraction principle gauge function weak continuous duality mapping
  • 相关文献

参考文献7

二级参考文献65

  • 1罗洪林,彭再云,刘超.一种n步迭代算法的收敛性分析及其应用(英文)[J].西南师范大学学报(自然科学版),2007,32(1):11-14. 被引量:3
  • 2朱熹平.临界增长拟线性椭圆型方程的非平凡解[J].中国科学:A辑,1988,3:225-237.
  • 3Siddiqi A H, Ahmad R. Ishikawa Type Iterative Algorithm for Completely Generalized Nonlinear Quasi-variational-like Inclusions in Banach Spaces [J]. Apply Math Comput, 2007, 45:594 - 605.
  • 4Ding X P, Xia F Q. A New Class of Completely Generalized Quasi-variational Inclusions in Banach Spaces [J]. J Comput Apply Math, 2002, 147: 369-383.
  • 5Ding X P, Luo C L. Perturbed Proximal Point Algorithms for Generalized Quasi-variational-like inclusions [J]. J Comput Appl Math, 2000, 210: 153-165.
  • 6Alber Y, Yao J C. Algorithm for Generalized Multi-valued co-variational Inequalites in Banaeh Spaces [J]. Funct Differ Equ, 2000, 7: 5-13.
  • 7Siddiqi A H, Ansari Q H. An Iterative Method for Generalized Variational Inequalites [J]. Math Japon, 1989, 24: 475 -481.
  • 8Chang S S. On the convergence of implicit iterative process with error for a finite family of asymptotically nonexpansive mappings. J Math Anal Appl, 2006 313:273-283.
  • 9Bauschke H H. The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. J Math Anal Appl, 1996, 202:150-159.
  • 10Halpern B. Fixed points of nonexpansive mappings, Bull Amer Math Soc, 1967, 73:957 -961.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部