期刊文献+

模糊逻辑法在3mm云雷达反演云中水凝物粒子相态中的应用 被引量:20

An Application of Fuzzy Logic Method to Cloud Hydrometeor Classifications Using the ARM WACR Data
原文传递
导出
摘要 利用模糊逻辑算法,结合大气辐射测量项目(ARM)中国寿县移动观测站3mm云雷达(WACR)资料,进行了云中水凝物相态垂直分布的反演研究。根据Shupe[3]总结得到的不同相态水凝物粒子对应的毫米波雷达反射率、Doppler平均速度、谱宽以及温度的阈值,建立了基本形式为不对称的T型函数的模糊逻辑识别的隶属函数,并根据不同相态粒子的散射特性和几何形状等增加了关于退偏振比的隶属函数。然后根据建立的隶属函数利用寿县站的3mm云雷达资料进行水凝物相态垂直分布的反演研究。结果表明:利用模糊逻辑法处理偏振3mm雷达测量到的参量,可以识别云中粒子相态,反映云的相态结构,识别结果基本合理,但是T型函数系数的选取还需要进一步研究。 The distribution of hydrometeor phase is the basis factor for determining the water content of cloud and precipitation.By using the WACR data from ARM Mobile Facility(AMF),Shouxian,China,the hydrometeor phase vertical distribution is retrieved with fuzzy logic algorithm.First,the membership functions of fuzzy logic method for reflectivity,Doppler mean velocity,spectral width and the temperature are established by the threshold of Shupe[3],and the asymmetric trapezoidal membership function is chosen as the form of the membership functions,the depolarization ratio membership function is established by scattering characteristics and geometric shape of different kinds of hydrometeor.Then,the vertical phase distribution of hydrometeor is retrieved by these established membership function with Shouxian WACR data.The main conclusions are got as follows:the more accurate results can be acquired with MPL data for thin cloud layer,but in deep cloud case the polarization information of WACR is helpful to improve the precision of retrieval.We can get the distribution of hydrometeor phase using the data of 3 mm radar with fuzzy logic algorithm,the results are reasonable,but the choose of T-function coefficient need further research.
出处 《遥感技术与应用》 CSCD 北大核心 2011年第5期655-663,共9页 Remote Sensing Technology and Application
基金 国家973计划项目"多尺度气溶胶综合观测和时空分布规律研究"(2010CB950804)资助
关键词 模糊逻辑 相态识别 云雷达 Fuzzy logic Hydrometeor classification Cloud radar
  • 相关文献

参考文献17

  • 1邱金桓,吕达仁,陈洪滨,王庚辰,石广玉.现代大气物理学研究进展[J].大气科学,2003,27(4):628-652. 被引量:65
  • 2陈洪滨.测量云液水柱含量的一个设想[J].大气科学,2002,26(5):695-701. 被引量:12
  • 3Shupe M D. A Ground-based Multisensor Cloud Phase Classi-fier[J]. Geophysical Research Letters, 2007,34 : L22809.
  • 4周著华,白洁,刘健文,钟中.基于EOS/MODIS的台风“浣熊”云顶相态分析[J].气象科学,2006,26(5):494-501. 被引量:18
  • 5Welch R M,Sengupta S K,Goroch A K,et al. Polar Cloud and Surface Classification Using AVHRR Imagery: An Intercomparison of Methods [J]. Journal of Applied Meteorology, 1992,31(5):405-420.
  • 6Hu Y,Winkera D,Yangb P,et al. Identification of Cloud Phase from PICASSO-CENA LiDAR Depolarization.. A Multiple Scattering Sensitivity Study[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2001,70(4-6):569-579.
  • 7Duchon C E,Malley M S. Estimating Cloud Type from Pyranometer Observations [J]. Journal of Applied Meteorology, 1999,38(1) :132-141.
  • 8Turner D D, Aekerman S A,Baum B A,et al. Cloud Phase Determination Using Ground-based AERI Observations at SHEBA[J]. Journal of Applied Meteorology, 2003,42 (6):701-715.
  • 9Wang Z, Sassen K. Cloud Type and Macrophysical Property Retrieval Using Multiple Remote Sensors[J]. Journal of Applied Meteorology,2001,40(10): 1665-1682.
  • 10Herzegh P H, Conway J W. On the Morphology of Dual Polarization Radar Measurements:Distinguishing Meteorological Effects from Radar System Effects[C]//Proceedings of the 23rd AMS Conference on Radar Meteorology, Snowmass, Co. USA, 1986 : 55-58.

二级参考文献172

共引文献227

同被引文献246

引证文献20

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部