期刊文献+

脑MR图像分割和偏移场矫正的耦合水平集模型 被引量:4

Coupling level set model for brain MR image segmentation and bias field correction
原文传递
导出
摘要 脑核磁共振(MR)图像因需要偏移场矫正,传统分割方法很难获得准确的分割结果。针对这一问题,首先构造一组基函数拟合偏移场以保证偏移场的光滑特性,再将其融入到高斯概率密度函数中,结合统计分类准则建立脑MR图像的分割和偏移场矫正的能量方程,最后将该能量方程引入到三相位水平集的变分框架中得到脑MR图像的分割和偏移场矫正的耦合模型。实验表明该方法在得到准确的分割结果同时还可以得到较好的恢复结果。 Due to the correction of the bias field, it is hard to obtain the accurate segmentation results of magnetic resonance(MR) images using traditional methods. In this paper, a set of basis functions is constructed firstly to fit the smoothness bias field; then the information of the bias field is introduced to the Gaussian density function, and according to the statistics classification rule, we define the energy function for the brain MR image segmentation and bias field correction. At last, this energy function is incorporated into a three-phase level set framework to propose our model. Compared with other approaches, our experiments demonstrate that our method not only can obtain accurate segmentation results but also can restore images better.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第11期2017-2023,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(60802039 61071146 61003209) 高等学校博士点学科点专项基金项目(200802880018) 南京理工大学资助科研重大专项项目(2010ZDJH07) 南京理工大学自主科研专项计划资助项目(2010ZYT070) 南京理工大学优秀博士培养计划项目 江苏省高校自然科学研究项目(10KJB520012) 江苏省研究生培养创新工程项目
关键词 偏移场 三相位 水平集 图像分割 bias field three-phase level set image segmentation
  • 相关文献

参考文献13

  • 1Wang Y, Adali T, Kung S Y, et al. Quantification and segmentation of brain tissues from MR images: a probabilistic neural network approach [ J ]. IEEE Transactions on Image Processing, 1998,7 ( 8 ) : 1165-1181.
  • 2Belaroussi B, Milles J, Carme S, et al. Intensity non-uniformity correction in MRI: Existing methods and their validation [ J ]. Medical Image Analysis,2006,10(2) :234-246.
  • 3Wells III,Gfimson W ,Kikinis R,et al. Adaptative segmentation of MRI data [ J ]. IEEE Transactions on Medical Imaging, 2002, 15(4) :429-442.
  • 4Van Leemput K, Maes F, Vandenneulen D, et al. Automated model-based bias field correction of MR images of the brain[ Jl. IEEE Transactions on Medical Imaging,2002,18 (10) :885-896.
  • 5Mohamed Ahmed, Sameh Yamany, Nevin Mohamed, et al. A modified fuzzy C-Means algorithm for bias field estimation and seglnentation of MRI data [ J ]. IEEE Transactions on Medical Imaging,2002,21 (3) :193-199.
  • 6Li C,Huang R,Ding Z,et al. A variational level set approach to segmentation and bias correction of medical images with intensity inhomogeneity [ C ]//Proceedings of Medical Image Computing and Computer Aided Intervention (MICCAI, 2008 ). New York City, USA : Springer Press,2008 : 1083-1091.
  • 7Wang L, Li C, Sun Q, et al. Brain MR image segmentation using local and global intensity fitting active contours/surfaces [ C ]// Proceedings of Medical Image Computing and Computer Aided Intervention ( MICCAI, 2008 ). New York City, USA : Springer Press,2008 : 384-392.
  • 8李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图像分割方法[J].计算机学报,2002,25(11):1175-1183. 被引量:125
  • 9Vese L, Chan T. A multiphase level set framework for image segmentation using the Mumford and Shah model [ J ]. Computer Vision,2002,50 (3) :271-293.
  • 10Li C,Gatenby C,Wang L, et al. A robust parametric method for bias field estimation and segmentation of MR images [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition ( CVPR, 2009 ). Miami, Florida, USA: IEEE Press, 2009:218-223.

二级参考文献1

  • 1李俊.基于曲线演化的图像分割方法及应用:博士学位认文[M].上海:上海交通大学,2001..

共引文献124

同被引文献15

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部