期刊文献+

遥感图像变化区域的无监督压缩感知 被引量:2

Unsupervised compressive sensing of change area in remote sensing images
原文传递
导出
摘要 传统的基于结构特征的遥感图像变化检测方法,易受成像稳定性的影响而误差很大。针对图像内在的稀疏性结构信息,提出基于压缩感知(CS)的遥感图像变化检测方法。通过自适应构造超完备字典将图像局部信息投影到高维空间中,实现图像的稀疏表示,并运用随机矩阵得到了数据在高维空间中的低维特征子空间。最后利用模糊C均值(FCM)聚类算法进行无监督聚类,实现遥感图像变化区域信息的重构。实验结果表明,本文方法不仅能够很好的检测出图像的轮廓变化和图像的区域变化,而且对噪声具有很好的鲁棒性。 Traditional remote sensing image change detection approaches based on structure features are usually limited by imaging stability. In this paper, we introduce a new method for unsupervised change detection in remote sensing images using compressive sensing (CS) based on the image inherent sparse structures. For this algorithm, a large collection of image patches is projected onto high dimensional spaces through redundant dictionary, giving an adaptive sparse representation per each image patch. A random matrix is taken as measurement matrix to realize feature space dimension reduction. Then, the final change detection is realized by clustering the feature vector space using the fuzzy C-mean clustering (FCM) algorithm, achieving the reconstruction of change regional information. The experimental results demonstrate that the proposed algorithm has good change detection results both in contour and region and has a good robustness.
作者 杨萌 张弓
出处 《中国图象图形学报》 CSCD 北大核心 2011年第11期2081-2087,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(61071163)
关键词 变化检测 遥感图像 压缩感知(CS) 模糊C均值(FCM)聚类 change detection remote sensing image compressive sensing (CS) fuzzy C-means (FCM) clustering
  • 相关文献

参考文献21

  • 1Rogerson P A. Change detection thresholds for remotely sensed images [ J]. Journal of Geographical Systems, 2002, 4( 1 ) : 85- 97.
  • 2Bazy Y, Bruzzone L, Melgani F. Automatic identification of the number and values of decision thresholds in the log-ratio image for change detection in SAR images [ J ]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3) : 349-353.
  • 3Bruzzone L, Priteo D. Automatic analysis of the difference image for unsupervised change detection [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3) : 1171-1182.
  • 4Celik T. Unsupervised change detection in satellite images using principal component analysis and k-mean clustering [ J ]. IEEE Geoscience and Remote Sensing Letters, 2009, 6 (4) : 772-776.
  • 5Celik T. Multiscale change detection in multitemporal satellite images [ J ]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4) : 820-824.
  • 6Pesquet J C, Krim H, Carfantan H. Time-invariant orthonormal wavelet representations [ J ]. IEEE Transactions on Signal Processing, 1996, 44 (8) : 1964-1970.
  • 7Engan K, Skretting K, Husd~y J H. Family of iterative l.S-based dictionary learning algorithms, ILS-DLA, for sparse signal representation [J]. Digital Signal Processing, 2007, 17 ( 1 ) : 32-49.
  • 8Varshney K R,Cetin M, Fisher J W, et al. Sparse representation in structured dictionaries with application to synthetic aperture radar [ J ]. IEEE Transactions on Signal Processing, 2008, 56(8) :3548-3561.
  • 9Wright J, Ymag A Y, Ganesh A, et al. Robust face recognition via sparse representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2) : 210-227.
  • 10Duarte-Carvajalino J M, Sapire G. Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization [ J ]. IEEE Transactions on Image Processing, 2009, 18(7) :1395-1408.

同被引文献93

  • 1Schwartz J, Steinberg B. Ultrasparse, ultrawideband arrays[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1998,45 (2) 376-393.
  • 2Fishler E, Haimovieh A, Blum R, et al. MIMO radar: an idea whose time has come[C]//Proeeedings of the IEEE Radar Conferenee. Newark, N J, USA: IEEE, 2004:71-78.
  • 3Candes E. Compressive sampling[C]//Proceedings of the International Congress of Mathematicians. Madrid, Spain : [s. n. ], 2006 : 1433-1452.
  • 4Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52 (2) : 489- 509.
  • 5Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52 (4): 1289- 1306.
  • 6Candes E J, Romberg J. Practical signal recovery from random projections[C]//Proceedings of SPIE. San Jose, CA, USA: SPIE,2005:56-74.
  • 7Donoho D L, Tsaig Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86 (3): 533-548.
  • 8Kashin B. The widths of certain finite dimensional sets and classes of smooth functions[J]. Izv, Akad, Nauk SSSR, 1977,41(2) : 334-351.
  • 9Candes E J, Tao T. Near optimal signal recovery from random projections., universal encoding strate- gies[J]. IEEE Transactions on Information Theory, 2006,52 (12), 5406-5425.
  • 10Ender J H G. On compressive sensing applied to radar [J]. Signal Processing, 2010, 90 (5):1402- 1414.

引证文献2

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部