摘要
设R是环,n和d是固定的非负整数,T是1-倾斜R-模(未必有限生成).称R-模M是(n,d)-T-内射模,如果对任意P∈Pr esn T,有ExtdR+1(P,M)=0.称R-模M是(n,d)-T-投射模,如果对任意(n,d)-T-内射模N,有Ext1R(M,N)=0.给出(n,d)-T-内射模与(n,d)-T-投射模的若干性质并证明(P Tn,d,I Tn,d)是一个完全的余挠理论,其中P Tn,d,I Tn,d分别表示所有(n,d)-T-投射模组成的类和(n,d)-T-内射模组成的类.
Let R be a ring,n and d fixed non-negative integers,and T was a 1-tilting R-module(not necessarily finitely generated).An R-module M was called(n,d)-T-injective if Extd+1R(P,M)=0 for any R-module P∈Pr esnT.R-module M was called(n,d)-T-projective if Ext1R(M,N)=0 for any(n,d)-T-injective R-module N. The paper gave out some properties of(n,d)-T-injective modules and(n,d)-T-projective modules,and it proved that(P Tn,d,I Tn,d) would be a complete co-torsion theory,where P Tn,d and ITn,dwould respectively denote the class of all(n,d)-T-projective module and the class of(n,d)-T-injective module.
出处
《兰州理工大学学报》
CAS
北大核心
2011年第5期153-157,共5页
Journal of Lanzhou University of Technology
基金
甘肃省教育厅研究生导师项目(0801-03)