期刊文献+

内射模和投射模的推广 被引量:2

Generalization of injective modules and projective modules
下载PDF
导出
摘要 设R是环,n和d是固定的非负整数,T是1-倾斜R-模(未必有限生成).称R-模M是(n,d)-T-内射模,如果对任意P∈Pr esn T,有ExtdR+1(P,M)=0.称R-模M是(n,d)-T-投射模,如果对任意(n,d)-T-内射模N,有Ext1R(M,N)=0.给出(n,d)-T-内射模与(n,d)-T-投射模的若干性质并证明(P Tn,d,I Tn,d)是一个完全的余挠理论,其中P Tn,d,I Tn,d分别表示所有(n,d)-T-投射模组成的类和(n,d)-T-内射模组成的类. Let R be a ring,n and d fixed non-negative integers,and T was a 1-tilting R-module(not necessarily finitely generated).An R-module M was called(n,d)-T-injective if Extd+1R(P,M)=0 for any R-module P∈Pr esnT.R-module M was called(n,d)-T-projective if Ext1R(M,N)=0 for any(n,d)-T-injective R-module N. The paper gave out some properties of(n,d)-T-injective modules and(n,d)-T-projective modules,and it proved that(P Tn,d,I Tn,d) would be a complete co-torsion theory,where P Tn,d and ITn,dwould respectively denote the class of all(n,d)-T-projective module and the class of(n,d)-T-injective module.
出处 《兰州理工大学学报》 CAS 北大核心 2011年第5期153-157,共5页 Journal of Lanzhou University of Technology
基金 甘肃省教育厅研究生导师项目(0801-03)
关键词 倾斜模 (n d)-T-内射模 (n d)-T-投射模 余挠理论 tilting module (n d)-T-injective module (n d)-T-projective modules co-torsion theory
  • 相关文献

参考文献9

  • 1STENSTROM E Coherent rings and FP-injective modules [J]. J London Math Soc, 1970,2(2) :323-329.
  • 2MAO L X, DING N Q. FP -projective dimensions [J]. Comm Algebra,2005,33(4): 1153-1170.
  • 3MAO L X,DING N Q Relative projective modules and relative injective modules[J].Comm Algebra,2006,34~2403-2418.
  • 4SILVANA R A characterization of n-cotilting and n-tilting modules [J].J Algebra, 2004,273: 359-372.
  • 5CHEN J L, DING N O, On n-coherent tings [J]. Comm Alge- bra, 1996, 24 :3211-3216.
  • 6COSTA D L Parameterizing families of non-Noetherian rings[J].Comm Algebra, 1994,22: 3997-4011.
  • 7ENOCHS E E. Inevtive and flal covers, envelopes and resolv- ents [J]. Israel J Math, 1981,39(3): 189-209.
  • 8ENOCHS E E,JEDAN O M G. Relative Homological Algebra[M]. Berlin-New Yorltz Walter de Oruyter,2000.
  • 9EKLOF P C, TRLIFAJ J. How to make Ext vartiedt [J]. Bull London Math Soc,2001,33(1) s41-51.

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部