期刊文献+

基于改进自适应粒子群算法的T-S模型辨识 被引量:3

Identification of TS Model with Improved Adaptie Particle Swarm Optimization
原文传递
导出
摘要 提出基于改进自适应粒子群算法(Improved Self-adaptation Particle Swarm Optimiza-tion,PSO)的T-S模糊模型辨识方法。首先,利用核函数的模糊聚类算法划分数据空间,尽可能少地提取模糊规则,并消除孤立点、噪声点数据等的不利影响;其次,基于ISPSO算法进行参数辨识,将待辨识的参数划分为若干粒子,自适应更新飞行速度,动态修改惯性权因子,惯性权因子呈非线性动态变化,不仅可以克服PSO算法陷入局部最优的早熟,失去多样性,而且可以提高粒子在全局最优位置绕行时的稳定性。提出的方法使得T-S模型辨识达到较高的辨识精度。仿真实例和比较分析证明了该算法的有效性。 An approach of improved adaptive particle swarm potimizaton is proposed for the identification of T-S fuzzy model. A fuzzy clustering based on kernel function is adopted to partition the data space and extract the fuzzy rules. The adverse effect of isolated point and noise point can be removed. The ISPSO proposed algonthm is applied to optimize the parameters. The parameters grouped as several particles are employed to search the space during the iteration. In each iteration, the velocity of particle is updated adaptively. The improved adaptive technique is utilized to modify the weight dynamically. The dynamical weight can overcome the premature and avoid falling into local optimum losting diversity. The stability of particles flying around the global optimum is improved. The identification accuracy is also improved. The simulation and comparative analysis show that the proposed method achieves very good results.
出处 《控制工程》 CSCD 北大核心 2011年第6期952-955,共4页 Control Engineering of China
基金 上海理工大学光电学院教师创新基金资助(GDCX-T-101)
关键词 T-S模型 核函数 模糊聚类 PSO算法 T-S model kernel function fuzzy clustering PSO algorithm
  • 相关文献

参考文献14

  • 1Takagi T,Sugeno M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Syst,Man,Cybern,1985, 15(1) :116-132.
  • 2Kilie K, Uncu O,Turksen I B. Comparison of different strategies of utilizing fuzzy clustering in structure identification[ J ]. Inform Sci, 2007,177 (23) ;5153-5162.
  • 3Wu K L, Yu J, Yang M S. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests[ J]. Pattern Recognition Letters ,2005,11 (2) :639-652.
  • 4Timm H, Kruse R. A modification to improve possibilistie fuzzy cluster analysis[ C ]. Honululu: Proc Of the 2002 IEEE Int Conf On Fuzzy Systems, IEEE ,2002.
  • 5Li C S, Zhou J Z, An X L, et al. T-S fuzzy model identification based on chaos opti- mization [ J ]. Springer-Verlag Berlin Heidel- berg ,2008,15 ( 7 ) :786 -795.
  • 6Kennedy J, Eberhart R. Particle swarm optimization [ C ]. Perth, Australia: Proc IEEE Int Conf on Neural Networks, 1995.
  • 7韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 8Shi Y, Eberhart R C. A modified particle swarm optimizer [ C ]. Proc. Of the IEEE CEC,1998.
  • 9Camastra F, Verri A. A novel kemel method for clustering [ J ]. IEEE Trans Pattern Anal M ach Intell,2005,27 (5) :801-804.
  • 10Chiang J H, Hao P Y. A new kernel-based fuzzy clustering approach : support vector clustering with cell growing [ J ]. IEEE Trans Fuzzy Syst,2003,11 (4) :518-527.

二级参考文献5

  • 1Shi Y, Eberhart R C. A Modified Particle Swarm Optimizer [C]//Proceedings of the IEEE Conference on Evolutionary Computation.Piscataway, NJ: IEEE Press, 1998, 69-73.
  • 2Shi Y, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization[C]//Proceedings of the IEEE Conference on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2001, 101-106.
  • 3Kennedy J, Eberhart R C. Particle Swarm Optimization [C]//IEEE International Conference on Neural Networks. Piscataway, NJ:IEEE Press, 1995, 1942-1948.
  • 4Eberhart R C, Shi Y. Particle Swarm Optimization: developments,applications and resources [C]//Proc. 2001 Congress Evolutionary Computation. Piscataway, N J: IEEE Press, 2001, 81-86.
  • 5吴浩扬,朱长纯,常炳国,刘君华.基于种群过早收敛程度定量分析的改进自适应遗传算法[J].西安交通大学学报,1999,33(11):27-30. 被引量:75

共引文献121

同被引文献25

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部